Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue

Yanxin Liu1, Stavros Thomopoulos2,3, Changqing Chen4, Victor Birman5, Markus J. Buehler6,7 and Guy M. Genin1,2

1Department of Mechanical Engineering and Materials Science, 2Center for Materials Innovation, and 3Orthopaedic Surgery, School of Medicine, Washington University, St Louis, MO 63130, USA
4Department of Engineering Mechanics, Tsinghua University, AML, Beijing, People’s Republic of China
5Engineering Education Center, Missouri University of Science and Tech, St Louis, MO, USA
6Laboratory for Atomic and Molecular Mechanics, Department of Civil Engineering, and 7Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen’s hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general.

1. Introduction

Progressive stiffening of collagen tissue by bioapatite mineral (‘bioapatite’) underlies much of musculoskeletal function and development. The spatial and temporal accommodation of bioapatite by collagen determines this stiffening and thus has important consequences for bone and for partially mineralized tissues that serve mechanical roles. Data for accommodation of bioapatite at the lowest levels of collagen hierarchical structure are now becoming available, although debate persists. Our objective, in this paper, is to apply this new nanostructural information, in conjunction with some recent nanoscale simulations of collagen mechanics, to develop estimates of the mechanical behaviour of partially mineralized collagen tissues. We then apply these models to interpret how partially mineralized tissues provide effective connection of tendon to bone.

Temporally, bioapatite accumulates on a collagen template during development to form mature bone [1]. Spatially, bioapatite increases from 0 vol% in tendon to 50 vol% in bone across the tendon-to-bone insertion site (the ‘insertion’) [2,3]. During development, bioapatite crystals may nucleate and grow in channels that arise in ‘gap regions’ at the terminations of tropocollagen...
molecules within collagen fibrils before accumulating on extrafibrillar surfaces, and possibly within ‘overlap regions’ (figure 1). However, studies have also demonstrated extrafibrillar mineral in the absence of intrafibrillar mineral [2]. Mineralization patterns of developing tissues may differ considerably from those of mature tissues.

Our focus is prediction of how intrafibrillar and extrafibrillar mineralization stiffens collagen fibrils, fibres and tissues. We connected mechanical moduli across several hierarchical levels using homogenization methods that bound or estimate the degree to which bioapatite can stiffen tissue composed primarily of collagen and water. The coarsest of these methods involves mechanical responses of fictitious tissues obtained by arranging tissue constituents in parallel or in series. Increasingly accurate estimates and tighter bounds can be obtained by considering the arrangements of collagen, water and mineral.

A substantial body of literature focuses on estimates of bone biomechanics based upon inferred patterns of mineralization [4–7]. The science of relating the specific architecture of bone to its macroscale mechanical properties is quite mature, with solid tools and estimates in place for estimating anisotropic material properties [4,8], quantifying bioapatite–collagen interactions [9] and dissecting the key contributors to bone mechanics [10], dissecting failure mechanisms [11]. For the microscale features of bone, a host of technologies exist for relating patient-specific scans to individualized micro mechanical models [12–14].

This study adds to this literature in two ways. First, it quantifies mechanical implications of the most up-to-date nanostructural data for collagen/bioapatite morphology. Second, it extends to partially mineralized tissues. Five possible sequences of mineralization were studied to evaluate the range of bioapatite accrual patterns supported by the literature, ranging from nucleation initiating in gap regions, as may occur during bone development, to nucleation initiating outside fibrils, as may occur along the insertion. We quantified how combinations of intrafibrillar and extrafibrillar bioapatite stiffens collagen, and how the specific sequence of mineralization affects tissue-level mechanical responses. These tissue-level responses were then studied in the context of attachment of dissimilar materials and engineered grafts to surgically reattach tendon to bone.

1.1. Background: nanoscale physiology of bone

Tendon and bone have nearly identical hierarchical collagen structures ranging from the nano- to milliscale. Bone contains approximately 50 vol% bioapatite incorporated into and onto this structure. The insertion presents graded transitions in bioapatite, composition and meso-, but not in nanoscale organization of collagen. It also presents gradients in protein content [15–18]. The tendinous end transitions towards bone from aligned, predominantly (approx. 98%) type I collagen fibres to a fibrocartilaginous layer composed of types I, II and III collagen and the proteoglycan aggrecan. This transitions to mineralized fibrocartilage dominated by type II collagen, but with significant amounts of type X collagen and aggrecan. Beyond this is bone proper, with mineralized type I collagen. Although the insertion is classically defined as containing four zones, no sharp boundaries are evident between zones, and the transitional tissue is compositionally graded.

As a first-order simplification, we focus on type I collagen (‘collagen’), the main organic component of tendon, bone and the insertion. Collagen’s nanoscale structure involves triple-helix collagen molecules, 300 × 1.5 nm diameter, that self-assemble into fibrils in a well-aligned but twisted and quasi-triclinic molecular packing [19]. Within fibrils, collagen molecules stagger with an axial period of $D = 67$ nm [20] that includes an overlap region (approx. 27 nm, or 0.4 D), and a gap region (approx. 40 nm, or 0.6 D) where one-fifth of triple-helix collagen molecules terminate (figure 1). Intermolecular spaces between triple-helix collagen molecules contain water and a small amount of non-collagenous proteins, including proteoglycans [21]. Collagen fibrils in tendons have a typical diameter of a few hundred nanometres and are decorated with proteoglycans, which form a matrix between fibrils.
Fibrils assemble into fibres, fibres into fascicles and fascicles into tendon. We calculated mechanical properties at three levels. Fibril-level moduli (superscript fibril) represent moduli of fibrils and their internal components, and were based upon data from molecular models. Fibre-level moduli (superscript fibre) represent moduli of repeating unit cells incorporating fibres and materials including decorins that bind and cross-link fibrils. Tissue-level properties (no superscript) were derived by averaging over a measured collagen fibre orientation distribution. A complete list of nomenclature can be found in the electronic supplementary material.

Accommodation of bioapatite within collagen is only partially understood [22,23]. A beautiful model system for partially mineralized collagen is avian tendon [24], but unfortunately the mineralization patterns observed there seem to differ from those seen in mammalian bone [25]. In mature bone, bioapatite crystals appear predominately as thin plates with approximate dimensions 2.1 \times 30 \times 40 \text{ nm} [26–29]. The 2.1 \text{ nm} minimum dimension of its Bravais lattice is the most certain of these dimensions [25]. The L_{m} \approx 30 \text{ nm} c\text{-axes of bioapatite crystals within gap regions align with the tropocollagen molecule axes. Atomic force microscopy studies [30,31] report bioapatite crystals with widths and lengths ranging from 30 to upwards of 200 \text{ nm}. Recent work suggests that intrafibrillar bioapatite exists predominantly within end-to-end gaps between triple-helix collagen molecules, in five defined orientations; three distinct area fractions (\alpha = (0.20, 0.28, 0.58)) of bioapatite are possible within a transverse cross section of a gap region filled to capacity with bioapatite (figure 1). Volume fractions of bioapatite are central to estimates of stiffening. \alpha = 0.58 corresponds to a tissue-level volume fraction of bioapatite \phi_{m} \approx 21\%, based on the relationship \phi_{m} = \rho_{\text{bioapatite}}/D_{m}, where \phi_{\text{bioapatite}} is the fibril-level volume fraction of bioapatite, and \rho \approx 0.80 the area fraction of fibrils in mature tendon [32]. The precise amount of bioapatite in the intrafibrillar spaces of the overlap regions has not been established, but is bounded at 0.6 that of the gap regions; even with this maximum addition (\phi_{m} \approx 0.21(1 + 0.6) = 0.33), intrafibrillar bioapatite cannot account for the volume fraction of bioapatite present in fully mineralized bone. Consistent with this, extensive bioapatite is observed exterior to collagen fibrils [3]. The maximum volume fraction of bioapatite that can be accommodated by bone is therefore \phi_{m} \approx 0.41, if bioapatite cannot accrue in the overlap region, and \phi_{m} \approx 0.53 if it can. Both lie within the range reported for wet bone [4]. We explored the progressive stiffening of collagen by bioapatite within these constraints.

2. Material and methods

We modelled stiffening of collagen by bioapatite within gap regions, on the exterior of fibrils, and possibly within overlap regions. Our focus was prediction and bounding of the ways that bioapatite stiffens collagen. The stiffening was sensitive to the nanoscale structures and interactions of collagen and bioapatite. Although models exist for the structures of fully mineralized and non-mineralized collagen [3], the sequence of bioapatite accumulation during development and the bioapatite distributions within partially mineralized tissues at the insertion are not known [22]. We therefore studied the range of possibilities described below. The nanoscale mechanical interactions between bioapatite and collagen are not known, but are an area of focus by us and others. The interactions likely involve strong adhesion at low stress levels with little effect on tropocollagen mechanics, and sliding at higher stress levels [33]. In the absence of other information and as a first approximation, we model complete adhesion between collagen and bioapatite.

2.1. Models of the sequence of mineralization

Five plausible sequences of mineralization were modelled (figure 2). Models began with unmineralized collagen fibrils (top row, figure 2), followed by prescribed bioapatite accumulation into gap regions, onto the exterior of collagen fibrils and within overlap regions:

- model A (‘gap-nucleated’) began with filling of gap regions (row 2, figure 2), and proceeded with extrabilateral mineralization that initiated at the mineralized gap regions (row 3), then extended the entire length of the fibril (row 4). The first stage of mineralization (0 ≤ \phi_{m} ≤ 0.21) involved inserting 2.1 \text{ nm} thick and 30 \text{ nm} high bioapatite platelets into the 0.4 \text{ D} \text{ (40 nm)} spaces between the C-terminus of one triple-helix tropocollagen molecule and the N-terminus of the next. Platelets were assumed to contact the N-terminus of one molecule and to extend 10 \text{ nm} short of the C-terminus of the next. Bounds and estimates on stiffening by these platelets involved different spatial sequences of filling gaps, ranging from filling the maximum allowable space of one gap region before proceeding to the next (lower stiffness bound), to filling all gaps simultaneously with equal volumes of bioapatite (upper stiffness bound). The second stage (0.21 ≤ \phi_{m} ≤ 0.41) involved formation of an extrabilateral sheath from the N-terminus end of each gap region, past the C-terminus end, and then on to the next gap region. Model A is supported by observations of long bioapatite platelets spanning multiple collagen fibrils [3].
- model B (‘nucleation-inhibited’) began as in model A with filling of gap regions. Subsequently, nucleation of extrabilateral bioapatite was treated as rare. Following nucleation, growth of extrabilateral bioapatite along a nucleation front was promoted. This was modelled by a sheath that began at one point along the fibril then extended to encompass the entire fibril;
- model C (‘nucleation-promoted’) also followed model A for intrafibrillar mineralization. Thereafter, nucleation of small, randomly distributed patches of extrabilateral bioapatite was promoted, but subsequent growth of these patches was suppressed;
- model D was analogous to model C, except that extrabilateral bioapatite accrued prior to intrafibrillar bioapatite; and
- model E was analogous to model A, except that bioapatite was also allowed into the intermolecular spaces of the overlap regions. The sequence of bioapatite accrual in model E was (i) as platelets within the gap regions (0 ≤ \phi_{m} ≤ 0.21); (ii) in an unknown structure within the overlap regions (0.21 ≤ \phi_{m} ≤ 0.33, rows 2–3); and (iii) as an extrabilateral ‘gap-nucleated’ sheath (0.33 ≤ \phi_{m} ≤ 0.53, rows 3–5).

2.2. Bounds and estimates for the stiffening of collagen

Bounds and estimates of stiffening by bioapatite are summarized here and presented in complete detail in the electronic supplementary material.

2.2.1. Stiffening of fibrils

For intrafibrillar mineralization, fibril-level longitudinal modulus bounds and estimates were assembled from structural arrangements of four types of regions: unmineralized collagen fibril within a gap region, modulus \underline{E}_{m}^{\text{fibril}}; unmineralized collagen fibril within an overlap region, modulus \underline{E}_{m}^{\text{fibril}}; mineralized collagen fibril within a gap region, modulus \underline{E}_{m}^{\text{fibril}}; mineralized collagen fibril within a gap region, modulus \underline{E}_{m}^{\text{fibril}}; and mineralized collagen fibril within a gap region, modulus \underline{E}_{m}^{\text{fibril}}.
region modulus $E_{g}^{\text{bio}}(\phi_{m})$; and mineralized collagen fibril within an overlap region modulus $E_{o}^{\text{bio}}(\phi_{m})$. E_{g}^{bio} and E_{o}^{bio} were estimated from ligament moduli reported by Stabile et al. [34], which, when scaled to the fibril level, yield $E_{g}^{\text{bio}} \approx 600$ MPa. This is consistent with models found for fibre recruitment models of tendon mechanics [35]. The overlap regions (height 0.4a) and gap regions (height 0.6a) were taken to resist load in series, with the assumption that $E_{g}^{\text{bio}} = \beta E_{o}^{\text{bio}}$, where $\beta \approx 0.8$, because the number of collagen molecules in the gap regions is four-fifths that of overlap regions (figure 1). Then, the total deformation of a fibril subjected to uniaxial loading was $\alpha D/E_{g}^{\text{bio}} = \alpha(0.4 D)/E_{o}^{\text{bio}} + \alpha(0.6 D)/(\beta E_{o}^{\text{bio}})$, where α is engineering stress (tensile force divided by initial cross-sectional area). Thus

$$
\begin{align*}
E_{g}^{\text{bio}} &= \left(0.43 + 0.6\right)E_{o}^{\text{bio}} \approx 0.69 \text{ GPa}, \\
E_{o}^{\text{bio}} &= \beta E_{g}^{\text{bio}} = 0.55 \text{ GPa}.
\end{align*}
$$

(2.1)

Bioapatite crystals ($E_{b} = 110$ GPa) [36] incorporate into fibrils with the 30 nm c-axis in parallel with collagen molecules. Bioapatite is believed to replace water without otherwise altering collagen [2]. The modulus of a mineralized gap region was then a parallel summation:

$$
E_{g,n}^{\text{bio}}(\phi_{m}) = E_{b}^{\text{bio}} + \alpha(\phi_{m})E_{o} \leq 65 \text{ GPa},
$$

(2.2)

where $\alpha(\phi_{m}) = \phi_{m}D/(\rho L_{m})$ denotes the degree of stiffening by bioapatite.

Stiffening of collagen in overlap regions was modelled with the Hashin–Shtrikman (HS) bounds (see electronic supplementary material, equations (2.1)–(2.3)). HS bounds are the tightest bounds for an unstructured mixture, and were appropriate, because intermolecular spaces within overlap regions cannot accommodate a single Bravais lattice of bioapatite. These bounds involved estimates for moduli and volume fractions of collagen molecules, bioapatite and the largely aqueous matrix between fibrils. Using a density of 1.12 g cm$^{-3}$ for tendon [37], approximately 1.3–1.4 g cm$^{-3}$ for collagen [38], and 1.0 g cm$^{-3}$ for the matrix yielded a volume fraction of collagen in tendon of approximately 30–40%. Adjusting for the volume fraction of fibrils in fibres (approximately the area fraction $\rho = 0.80$) suggests that fibrils contain 50 vol% of water/matrix and collagen molecules. Using the body temperature bulk modulus of water and Poisson ratio $\nu = 0.499999$ yielded $E = 13$ kPa [39] for this effective matrix. The modulus of the remaining material within an overlap region was estimated from the three-dimensional HS upper bound: matching this upper bound to $E_{o}^{\text{bio}} = 0.69$ GPa and taking $\nu = 0.3$, this was then estimated as $E_{o}^{\text{bio}}(\phi_{m}) \approx 2.28$ GPa. Bioapatite accruing in the overlap regions replaced aqueous matrix and accrued according to $\phi_{b}^{\text{bio}} = (\phi_{m} - \phi_{b}^{\text{max}})/\phi_{b}^{\text{max}} = (\phi_{m} - 0.21)/(0.4\rho)$, whereas the fibril-level volume fraction of collagen remained at 50%.

Figure 2. Five possible models were considered for the sequence of accumulation of bioapatite within and upon collagen fibrils. Model A, the ‘gap region-nucleated model’, involved a filling to capacity of the gap regions followed by extrafibrillar bioapatite nucleating over the gap regions spreading along the fibril. Model B, the ‘external nucleation inhibited model’, involved a filling to capacity of the gap regions followed by extrafibrillar bioapatite emanating from a single nucleation site on each fibril. Model C, the ‘external nucleation promoted model’, involved a filling to capacity of the gap regions, followed by random accumulation of bioapatite on the exterior of fibrils, with no subsequent growth of these accumulations. Model D, the ‘internal nucleation inhibited model’, involved random extrafibrillar accumulations of bioapatite preceding the filling of gap regions. Model E was identical to model A, except that it included mineralization of the overlap regions following the filling to capacity of the gap regions and prior to extrafibrillar mineralization. Bottom panel: homogenization bounds that do not account for collagen and bioapatite architecture are broader than those that do. We used these models to generate bounds and estimates on the mechanics of fibrils. These bounds and estimates were then applied to bounds and estimates of fibre mechanics. (Online version in colour.)
volume fraction of aqueous matrix decreased as \((0.5 - \phi_w^{\text{fibril}}) \).
The modulus of mineralized overlap regions was then taken as the
three-dimensional HS lower bound (bioapatite embedded
within a fibril lattice surrounded by aqueous matrix),
\(E_{\text{fibril}}(\phi_w) \leq 3.36 \text{ GPa.} \)

Fibril moduli were constructed from those of the above four regions.
The upper bound involved adding equal volumes of bioapatite platelets to all gap regions simultaneously. Three
types of regions were then combined in series: overlap regions,
partially mineralized gap regions and unmineralized regions of
gap regions representing space close to the C-termini of tropocol-
lagen molecules that never mineralize. The lower bound was
obtained by requiring that a single gap region be filled to the
maximum level (area fraction \(\alpha_{\text{max}} = 58\% \)) before gap regions
in the next gap region begin to accrue bioapatite.

In model E, after bioapatite platelets filled in the maximum
allowable volume in gap regions, bioapatite was deposited in
overlap regions. The upper bound fibril modulus involved
adding bioapatite to all overlap regions simultaneously, and
the lower bound involved filling a single overlap region entirely
before adding bioapatite to the next.

2.2.2. Longitudinal stiffening of fibres
Linear response of fibres. Adjacent collagen fibrils were modelled
as bound together with an extrabril fibril matrix (EFM, volume
fraction \(1 - \rho = 0.20 \)) containing a relatively small amount of
non-collagenous proteins that serve to bind adjacent collagen fibrils [31]. We neglected EFM contributions to longitudinal
stiffness because its estimated modulus \((E_{\text{EFM}} \approx 0.287 \text{ MPa, see}
\text{electronic supplementary material}) \) was small compared with
that of collagen fibrils, but included it below in estimates of
transverse moduli.

Bounds and estimates of stiffening involved accounting for
extrabril fibril bioapatite in parallel with four types of possibly miner-
alised fibre segments: unmineralized gap regions, fully mineralized
gap regions, unmineralized overlap regions (models A–D) and
mineralized overlap regions (model E). Upper bounds on stiffening
were estimated by modelling extrabril fibril bioapatite as thin sheaths
around fibrils that grew radially increasing mineralization. Lower
bounds were estimated by modelling extrabril fibril bioapatite as
thick sheaths that grew longitudinally with increasing mineralization.
Bounds and estimates for models A, B and E are included in
the electronic supplementary material. Models C and D involved
random accumulations of extrabril fibril bioapatite whose contri-
butions were estimated using finite-element methods, as described
below. A key feature of each of these models was a percolation
threshold representing a critical bioapatite volume fraction at
which stiffening by apatite rose rapidly from near the lower
bounds to near the upper bounds.

Nonlinear response of fibres. Although our primary interest was
linear approximations to collagen behaviour, mechanical measure-
ments show sea cucumber dermal collagen fibres [40–43] and
associated molecular dynamics (MD) models for fibrils [33] show
significant nonlinearity at large strains. Although these MD
simulations have not yet been validated directly, we believe that
they represent the best estimates for the mechanics of type I
mammalian collagen fibrils. We therefore studied the effects of
mineralizing these fibres as a first effort at exploring the effects
of nonlinearity given available data. As with the linear estimates,
we note that the details of collagen–mineral nanoscale interactions
are unclear at present and therefore model as a first approxi-
mation perfect adhesion between the two. Validation and
modification of these MD results and identification of models
of nanoscale collagen–mineral interactions are ongoing areas of
research in our laboratories.

We studied the uniaxial relationship between engineering
stress \(\sigma \) and engineering strain \(\epsilon \) (ratio of fibril distension to
initial fibril length) in a partially mineralized mammalian type
I collagen fibril that, when unmineralized, followed the stress–
strain relationship predicted by the MD simulations of [44],
\(\sigma = \frac{\phi_{\text{fibril}}}{\phi_{\text{EFM}}} \). Mineralization was taken to follow the scheme
of model A. Because data for \(\phi_{\text{fibril}}^{\text{MD}}(\epsilon) \) are available for only a
single loading rate, viscoelastic effects could not be modelled.
An effective nonlinear, continuum constitutive response of
hydrated collagen within a fibril, \(\epsilon_{\text{fibril}}^{\text{MD}}(\epsilon) \), was estimated from
\(\phi_{\text{fibril}}^{\text{MD}}(\epsilon) \) as follows. Collagen in the gap and overlap regions
was idealized as identical continua. A uniaxial stress \(\sigma \) on the fibril
was elevated to \(\sigma/0.8 \) in the gap regions owing to gaps
between tropocollagen molecules. The total strain of a fibril
was then the weighted sum of the strain \(\epsilon_{\text{gap}} = (\epsilon_{\text{fibril}}^{\text{MD}})^{-1}\left(\alpha/0.8\right) \)
in gap regions and \(\epsilon_o = \left(\epsilon_{\text{fibril}}^{\text{MD}}\right)^{-1}(\alpha) \) in the overlap regions:
\[
\epsilon = \left(\frac{\phi_{\text{fibril}}}{\phi_{\text{MD}}}\right)^{-1}(\sigma),
\tag{2.3}
\]
and
\[
\epsilon = 0.4 \epsilon_o + 0.6 \epsilon_{\text{gap}} = 0.4 \left(\epsilon_{\text{fibril}}^{\text{MD}}\right)^{-1}(\sigma) + 0.6 \left(\epsilon_{\text{fibril}}^{\text{MD}}\right)^{-1}(\alpha/0.8),
\tag{2.4}
\]
\((\epsilon_{\text{fibril}}^{\text{MD}})^{-1}(\sigma) \) was calculated from equation (2.4) and a fifth degree
polynomial fit to data for \((\epsilon_{\text{fibril}}^{\text{MD}})^{-1}(\alpha) \) (dashed-dotted curve,
figure 3a, blue line in online version). The uniaxial constitutive
response of partially mineralized fibres was estimated based upon
\(\epsilon_{\text{fibril}}^{\text{MD}}(\epsilon) \) (red solid curve, figure 3a) and upon methods ana-
logous to those described above. Details are provided in
the electronic supplementary material.

2.2.3. Transverse stiffening of fibres and fibrils
Transverse \((x_y-\text{and } x_z\text{-direction, where the } x_z\text{-direction parallels the}
\text{fibre axis}) \) properties of fibres and fibrils contribute to the
axial moduli of tendon and bone. Fibres have a distribution of
orientations, and estimating the axial moduli of tendon and
bone involves integrating the full stiffness tensors of fibres over
this distribution. Little data exist for rigorous estimates of these
transverse properties, and even the simple estimates presented
here required a number of assumptions. Fortunately, this ambigu-
ity does not cloud interpretation of predicted moduli of partially
mineralized tissues: these estimates are fully appropriate for tan-
gent moduli of tendon and for tissue containing bioapatite
volume fractions above the percolation threshold, and the trans-
verse moduli of fibres have little contribution to the structural
response of the insertion at bioapatite concentrations below the
percolation threshold [45].
Transverse moduli for partially mineralized tissues were
studied analytically using HS bounds, and using finite-element
procedures described in §2.2.4. Details may be found in
the electronic supplementary material.

2.2.4. Stochastic finite-element simulation for random bioapatite
accumulation
Finite-element analysis was used for Monte Carlo simulations of
random accumulations of extrabril fibril bioapatite (models
C–E) and for estimating transverse moduli. The domain
studied (figure 4) was a rectangular section of a compliant
EFM (red) containing a hexagonal array of fibrils (volume frac-
tion 0.8). Fibrils had a uniform diameter of 155 nm [46]. Fibrils
were divided longitudinally into six pairs of overlap and gap
regions; gap regions were divided into regions that could
accept mineral (height \(L_m \)) and regions that could not (height
0.6D \(L_m \)). In simulations that allowed addition of randomly
accruing bioapatite, fibrils were surrounded by sheaths of
matrix elements that could be replaced with bioapatite (mesh
not shown).

Periodic unit cell boundary conditions were applied to an
eight-space model. The three surfaces with outward normals in
the positive \(1, 2\text{- and } 3\text{-directions were constrained to maintain}
these normal directions, and to be free of shear traction, whereas
the remaining three surfaces were constrained to have no shear tractions and no displacement in the direction of the surface normal. In each instance, one of the three faces with a positive outward normal was perturbed a prescribed amount, whereas the other two such faces were allowed to shrink inwards owing to Poisson contraction. The effective linear longitudinal and transverse moduli of the unit cell were determined from the forces necessary to sustain these isometric levels of stretch.

The EFM was approximated as isotropic, and fibrils were approximated as containing up to four transversely isotropic regions: gap regions with maximal intrafibrillar mineralization, unmineralized gap regions, mineralized overlap regions and unmineralized overlap regions. Poisson’s ratios were set equal for each type of region: \(v_{12}^{\text{fibril}} = v_{23}^{\text{fibril}} = 0.3 \). The transverse and longitudinal moduli of these regions were as described above. The shear modulus was set to \(G_{12}^{\text{fibril}} = E_{12}^{\text{fibril}}/2 \). Finite-element results showed effective moduli \(E_{1}^{\text{fibre}} \) to be relatively insensitive to choices of \(v_{12}^{\text{fibril}}, v_{23}^{\text{fibril}} \) and \(G_{12}^{\text{fibril}} \).

Simulations began with estimates of the effects of replacing unmineralized gap and overlap regions with mineralized gap and overlap regions within fibrils. Subsequent effects of extrafibrillar mineralization involved replacement at random of elements having the properties of EFM with elements having the properties of bioapatite. These Monte Carlo simulations were performed

Figure 3. Estimates of the nonlinear stress–strain response of individual collagen fibrils. (a) Stress–strain behaviour of collagen fibrils, based upon molecular dynamic simulations [44], and the estimated effective continuum constitutive response of collagen (solid line, red in online version). (b,c) These data for fibrils were used to make first-order estimates of the mechanics of fibres. Stiffening of fibres, following the mineralization scheme of model A, increased with increasing bioapatite volume fraction \(\phi_m \) but does so nonlinearly. As in the linear models, extrafibrillar bioapatite nucleating around the gap regions contributes little to longitudinal stiffness until the extrafibrillar bioapatite sheaths extend beyond the mineralized portions of the gap regions. (d) Tangential modulus of fibres, shown as a function of \(\phi_m \) at several levels of strain, displays rapid stiffening for bioapatite volume fractions beyond the percolation threshold. (Online version in colour.)

Figure 4. At the fibre level, some transverse and longitudinal moduli were estimated from finite-element simulation of the mechanical response of a representative unit cell. The unit cell shown with approximately 20 000 reduced integration tetrahedral elements was adequate for convergence of simulations of unmineralized collagen fibres. Significantly finer meshes discretized to allow sheaths of mineral were required for simulations of partially mineralized fibres. (Online version in colour.)
using standard techniques using scripts written in the MATLAB environment in combination with Consol finite-element analysis software. Careful convergence studies were performed. Models with no extracellular mineralization could achieve convergence within 5% with as few as 20,000 quadratic, reduced integration tetrahedral elements (figure 4), whereas models with extracellular mineralization required upwards of 100,000 elements.

2.3. Stiffening of tissues

The spatially varying tissue-level stiffness tensor \(C(x) \) was estimated at points \(x \) along the axis of a insertion from fibre-level moduli \(C^{\text{fiber}}(\phi_m) \), published values for the spatial variation of \(\phi_m(x) \), and published values of the spatial variation of the angular deviation \(s(x) \) that defined the circular orientation distribution of fibres according to a von Mises distribution [47]. \(C^{\text{fiber}} \) was assembled from spatially varying moduli estimates as described in the electronic supplementary material. Assuming a fibre distribution that is symmetric about the axis of the insertion, \(C(x) \) was calculated according to:

\[
C(x) = \frac{1}{2\pi} \int R^T(\theta)R^T(\theta)C^{\text{fiber}}(\phi_m(x))R(\theta)R(\theta)p(\theta, s(x))d\theta.
\]

where \(\theta \) is the inclination angle from the tendon-to-bone axis, \(R(\theta) \) is a rotation from a coordinate system with the \(x_1 \)-direction oriented \(\theta \) from the tendon-to-bone axis to the global coordinate system in which \(C(x) \) is defined, and \(p(\theta, s(x)) = \exp(b \cos 2\theta)/n_b(b) \), in which \(b \) is the root of \(1 - (I_1(b)/I_0(b)) - 2z(s) = 0 \), \(I_p(b) \) and \(I_0(b) \) are the modified Bessel functions of order 0 and 1, respectively, and \(s \) is in radians.

3. Results and discussion

3.1. Progressive stiffening of collagen fibres by bioapatite

Bioapatite increased the stiffness of collagen monotonically, but the degree of stiffening was sensitive to the sequence and structure of bioapatite accumulation. The effective nonlinear, fibril-level constitutive response \(g^{\text{fiber}}(\epsilon) \) of a hydrated collagen continuum was estimated from equation (2.4) and the data of [44]. The inverse of this function, \((g^{\text{fiber}})^{-1}(\alpha) \), followed these data closely (figure 3d, solid curve, red in online version). At the next hierarchical level, the fibre-level tangent stiffness of collagen increased linearly with straining, but never approached that of a nonlinear, fully mineralized fibre (figure 3b).

Mineralization according to model A stiffened such fibres monotonically (figure 3b,c). We note once more that while we can be confident of the responses at lower strains, the upper limits of these curves are highly uncertain, because the strain levels associated with permanent changes to collagen are not yet known, and those associated with slippage between collagen and bioapatite are even less certain (cf. [33,48]). Stiffening was less pronounced beyond \(\phi_m = 0.21 \), the point at which gap channels became filled to capacity with bioapatite and intracellular mineralization completed (figure 3d). For \(0.21 < \phi_m < 0.3 \), extracellular sheaths extended over gap regions containing intracellular mineral, yielding little additional stiffening (figure 3c,d). Significant stiffening was observed once more for \(\phi_m > 0.3 \), as extracellular sheaths extended over the overlap regions.

Trend lines in figure 3d do not converge at the stiffness of bone, because the levels of strain that must be accommodated just prior to percolation in this model are also high for input data to provide trustworthy constitutive estimates; extrapolating out would yield stiffnesses of a mineralized fibril that far exceed the moduli of bone. The high levels of strain in the compliant phase associated with the approach to percolation are evident in the curves associated with 0.21 < \(\phi_m < 0.3 \). Here, the curves switch from concave up to concave down, associated with the slight reduction in stiffness of in the last datapoint of the Gautieri data, at a strain level approximately twice the average strain in the fibril. These predictions require validation to be trusted, especially because that single datapoint might represent either yield or numerical error. However, even with this uncertainty they highlight the amplification of strain that occurs in the approach to percolation and the importance of understanding the role of structural effects on the material response of a composite tissue.

Despite these limitations, it is useful to examine the relevance of the predictions to physiological levels of strain. One clear limit is the strain level at which fibrils and fibres begin to disassemble when loaded. The possible range of strains for disassembly is large, with estimates ranging from 0.07 to 0.5 [33]. These seem to be high values compared with the normal physiological range (a few percentage strain in bone, and up to 10% in tendon), but relating these measures to strain levels in vivo is premature because of the many unknowns including the level of pre-strain in fibrils and the heterogeneity in fibril strains that underlie the gradual recruitment of fibres during stretching. For load transfer across a region of tissue with a gradation in mineralization, a uniform tensile loading would be expected to induce a spectrum of strains in partially mineralized collagen fibrils based upon their degree of mineralization. Although further study is needed before nonlinear estimates such as these can be applied to model load transfer across a tendon-to-bone insertion site, the results provide an important baseline datapoint for ongoing study.

We next directed attention to linearized moduli to assess the five models of mineralization. The HS bounds (shaded region, figure 5; yellow in online version) formed a broad envelope for stiffening by bioapatite, with the lower bound extending beneath the lower cut-off of the graph. The HS upper bound displayed a slight ‘bump’ at \(\phi_m = 0.21 \), where the composite considered shifted from a four-phase (mineralized gap regions, unmineralized gap regions, unmineralized overlap regions and EFM) to a five-phase composite (including extracellular bioapatite). Incorporating microstructure into the bounds led to tighter bounds (darker shaded region, figure 5 orange in online version). For \(\phi_m < 0.21 \) in models A–C (figure 5a), the upper bound required adding equal amounts of bioapatite to all gap regions simultaneously, resulting in relatively rapid initial stiffening and little stiffening thereafter, whereas the lower bound required adding bioapatite one gap region at a time, resulting in more gradual stiffening.

For models A–C, subsequent bioapatite accrued on the fibril exterior. The upper bound involved uniform sheaths of bioapatite that increased in thickness with increasing \(\phi_m \). The lower bound required either a sheath of bioapatite growing from one end of an infinitely long fibre (model B, light-shaded region) or periodically repeating belts growing from mineralized gap regions (model A, dark-shaded region, orange in online version). The upper bounds associated with models A and B differed, because the latter involved addition of extracellular bioapatite to a homogenized, internally
mineralized fibril, whereas the former incorporated the spatial distribution of bioapatite (equations in the electronic supplementary material).

For model E (figure 5c), an intermediate region existed in which bioapatite accrued within the overlap regions. Because bioapatite that exists in overlap regions is likely disorganized, three-phase (bioapatite, fibril, water) HS-type bounds were used.

The above bounds aided in the interpretation of the estimates of stiffening. For models A–C, the lower bound was the trendline for intrafibrillar mineralization: simulations with gap regions mineralized in random order (circles, figure 5a) followed the lower bound, as occurs with particle reinforced composites [49]. We note that random gap-by-gap mineralization is supported by the literature [22]. Thereafter, the three models diverged. Model A (extrafibrillar sheaths extending from gap regions) followed the series lower bound, with appreciable stiffening only after the sheaths extended beyond mineralized gap regions. The linear model reduced stiffening slightly at low \(\phi_m \) relative to the nonlinear model. Model B (uniform sheath extended a single site) stiffened more rapidly as the sheath encompassed overlap regions at lower \(\phi_m \). Model C (random extrafibrillar additions) followed model B initially, but then stiffened rapidly towards the upper bound as a continuous network of mineralized EFM formed for \(\phi_m \) beyond the percolation threshold. In all cases, the final modulus of a fibril exceeded the nominal modulus of \(E_{bone} = 20 \) GPa for cortical bone, indicating that the composite need not be fully dense with extrafibrillar bioapatite to reach this stiffness.

Model D (figure 5b, random extrafibrillar mineralization preceding intrafibrillar mineralization) followed models A–C until a percolation threshold, then stiffened beyond the four-phase HS bounds, as expected for a composite in which the stiff phase has a preferred alignment. Subsequent intrafibrillar mineralization yielded little stiffening.

Model E (figure 5c) included bioapatite in the overlap regions (0.21 \(\leq \phi_m \leq 0.33 \)). Stiffening here followed the HS lower bound, continuing the trend from the first region with little change in curvature, suggesting that stiffening is insensitive to whether gap versus overlap mineralize first. Thereafter, model E paralleled model A, except with a discontinuity in stiffening as the extrafibrillar sheaths extended over the different regions. Discontinuities disappeared for randomly accruing extrafibrillar bioapatite as in model C (circles, figure 5a).

The sequence of mineralization determined the nature of the mineralized structures that arose, and, in turn, the degree to which a specific volume fraction of bioapatite could stiffen a fibre. In each case, percolation was a key determinant of the degree of stiffening. Early formation of a sheath on a fibre’s exterior (model D), as may occur in development, leads to significant stiffening at approximately one-third of the mineral volume fraction required if intrafibrillar mineralization precedes extrafibrillar mineralization (models A–C).

A number of other sequences of mineralization are possible in addition to those considered. Two important cases merit...
follow that of the first two regimes of figure 5 owing to random intrafibrillar accumulation would roughly presented: the results for model C indicate that the stiffening requires that nonlinear estimates be recognized as reliable upon which these estimates are based requires that nonlinear estimates be recognized as reliable only at smaller strain levels.

3.1.1. Stiffening transverse to a fibre axis

Transverse modulus estimates (figure 6a) were dominated by the EFM modulus at low levels of mineralization. Intrafibrillar mineralization had minimal (lower bound) stiffening effect, whereas extrafibrillar mineralization could lead to percolation more rapid than that observed for axial moduli. This was sharpest for model A, with a bioapatite network linking mineralized gaps of neighbouring fibres forming shortly after the onset of extrafibrillar mineralization. Formation of such bioapatite bridges is consistent with TEM observations [3]. Subsequent mineralization had a smaller stiffening effect. Model B predicted more gradual stiffening, because the percolated network surrounded both gap and overlap regions at the lowest levels of extrafibrillar mineralization. The random patterns of extrafibrillar bioapatite in model C resulted in further percolation delay. Model D (figure 6b) was analogous to model C but with extrafibrillar mineralization preceding intrafibrillar mineralization. The estimate for model E (figure 6c) was initially lower than the HS bounds, which are valid only for non-structured solids. Significant stiffening occurred only following extrafibrillar mineralization. We note that these observations might explain AFM measurements reporting a sharp mineralization front at the ligament-to-bone insertion: the models predict a
sharp rise in transverse stiffness over a narrow range of the gradual rise in mineralization.

3.2. Progressive stiffening of collagenous tissues by bioapatite

We studied effects of gradations in bioapatite at the insertion. A compliant region between tendon and bone has been measured experimentally by tracking local strain between unmineralized and mineralized tissues [15]. This compliant tissue may serve to reduce stress concentrations [56] and is understood to arise from a trade-off between competing gradients of collagen organization and bioapatite [45]. The details of this zone are of interest, because the natural tissue is not regenerated following healing or surgical repair, and postsurgical failure rates reach 94% [57]. An important factor is surely that type II collagen in the insertion is expected to have mechanical properties that differ from type I collagen in bone and tendon. We hypothesized that, in addition to this, the nanoscale architecture of bioapatite accommodation is important for the spatial variation of stiffness along the insertion, and therefore investigated how the stiffness of a collagen fibril increases as bioapatite accumulates within and upon it, and as bioapatite links neighbouring fibrils. Results showed that the size of the compliant region, underestimated by previous methods, is highly sensitive to the way that mineral accrues on fibres across the insertion site.

The dominant factor in the size of this region is the onset of mineralization: this occurs at about the peak of disorganization in collagen at the insertion, and about halfway along its length (figure 7). The specific pathway by which bioapatite accumulates on the interior and exterior of a fibril can extend the width of the compliant zone. For model D, in which an extrafibrillar sheath of bioapatite forms around fibrils prior to mineralization of the fibril’s interior, the rise in stiffness owing to bioapatite is relatively rapid. In all four of the other models, which we consider to be more likely candidates based upon our observations, the pattern of bioapatite accrual delays the rapid rise to the stiffness of bone, in some cases by delaying percolation to nearly 80% of the way from tendon to bone (figure 8). The minimum value of modulus predicted between tendon and bone is higher than that reported in [15], suggesting that other factors not considered, including a spatial gradient change in the collagen content, might play an additional role.

Figure 7. The spatially varying mechanical properties of the insertion were modelled based upon competing gradients in (a) organization of collagen fibres, and (b) bioapatite volume fraction. Disorganization of collagen fibres (increasing angular deviation) increases in the material between tendon and bone. The gradient in bioapatite volume fraction begins near the point of greatest disorganization (× symbol). The trendlines are based upon data described elsewhere [45]. (Online version in colour.)

Figure 8. Tissue-level estimates of linear elastic moduli. The longitudinal modulus of tissue along the axis of the insertion is lower than that of either tendon or bone over a ‘compliant region’ within the insertion. The mineralization schemes most consistent with the literature serve to broaden this compliant region relative to model D. (Online version in colour.)

Results suggest that no modification of collagen properties by bioapatite owing to nanoscale interactions are needed to explain the stiffness of bone in terms of the properties of its constituents. Whereas many engineering polymer matrix nanocomposites are dominated in their behaviour by a stiffening and embrittlement that occurs at the polymer/nanoreinforcement interface, this might not occur in bone.

These results suggest that the pattern of mineralization that exists between tendon and bone may be tailored to maximize the size of a compliant band of tissue in healthy adults. Following both healing and repair surgery, the functionally graded tissue region and associated compliant zone are not regenerated, perhaps an important factor in the high rates of re-tear that occur [57]. Results presented here suggest that graft design can be optimized to account for this. We are currently pursuing this in our own laboratories through nanofibrous networks with gradations in bioapatite content [58] and orientation distribution [59] that mimic those of the insertion. Such nanofibrous electrospun mats are biocompatible, and can be tailored with cues for directed cell growth [59]. Although a wide range of mechanical properties are possible in this system, this study suggests that a fundamental rethinking of this approach is warranted involving stiffening and toughening over the entire range of spatial hierarchies [60,61]. Indeed, MD analysis has shown that microstructural details are key to constitutive and strength response of
proteins, including hydrogen bond- and cross-link-driven unfolding mechanisms [62], and dissipative sliding of molecules [63]. While sacrificial bonds of bioapatite between mineralized collagen fibres [31] and the heterogeneity of such links [48,64] have long been known to be central to bone’s toughness, the current results suggest an important role for the hierarchically derived stiffening of collagen by bioapatite, and suggest this as an important future direction for the design of scaffolds that guide post-surgical healing.

4. Conclusion

The nanoscale details of the accumulation of bioapatite on partially mineralized collagen fibrils are central to the fibril mechanics. Although the sequence and structure of mineralization are not yet known, reasonable estimates can be made. We presented models for a reasonable range of estimates and showed how these are important in the case of attachment of dissimilar materials. Mineralization sequences cited most frequently in the literature suggest that the nanostructure of collagen is optimized to accumulate bioapatite in a way that delays percolation. This in turn expands the size of the compliant region of partially mineralized tissue between tendon and bone and provides for a slower spatial gradient in tissue modulus, which has important ramifications in terms of macroscale stress transfer, and for cues to cells [65,66]. Nanostructurally based mechanical differences between developing and mature tissues may underlie poor healing outcomes in torn tendon-to-bone attachments [23,67]. In combination with observations that intermediate levels of mineralization are optimal for toughening of collagen [48], the current result that intermediate levels of mineralization might be distributed optimally across hierarchies to minimize stiffening motivate a picture of the insertion as an optimized, tough, compliant band.

Acknowledgements. Y.X.L. acknowledges a graduate fellowship from the Fannie Stevens Murphy Foundation.

Funding statement. This work was supported in part by the NSF (CAREER 844607), the NIH (R01 AR055580), and a joint NSF-NIH multiscale modelling grant (U01EB016422).

References

