Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability

Camelia E. Dijkstra1, Oliver J. Larkin1, Paul Anthony1, Michael R. Davey1, Laurence Eaves2, Catherine E. D. Rees1 and Richard J. A. Hill2,*

1School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
2School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

Keywords: diamagnetic levitation; bacterial growth; convection; sedimentation; simulated microgravity; weightlessness

1. INTRODUCTION

It is important to understand how weightlessness influences bacterial behaviour, not only for the health of astronauts, but also for the long-term future of space exploration [1]. Earth-based techniques can simulate aspects of a microgravity environment, but are either time-limited to a few seconds or minutes (drop towers, parabolic flights and sounding rockets), or use rotation to time-average the gravity vector to zero, which can introduce artefacts owing to the rotating reference frame (clinostats, random positioning machine; [2]).

Here, we use the diamagnetic force induced by a strong, spatially varying magnetic field to balance the force of gravity [3–7]. Just as the centrifugal force balances the gravitational force on an orbiting spacecraft, the diamagnetic force opposes the force of gravity on a levitating object. The potential of diamagnetic levitation as a laboratory-based tool to investigate the effects of weightlessness on living organisms was first demonstrated by Valles et al. [5], who studied levitating frog embryos, and by Berry & Geim [4] who levitated a live frog. Liu et al. [8] recently demonstrated levitation of a live mouse. In common with all ground-based techniques to simulate weightlessness, there are effects introduced by diamagnetic levitation that are not present in a weightless environment. For the first time, we critically assess the effect of diamagnetic levitation on a growing bacterial culture in liquid, over an 18 h period. We use a superconducting magnet to levitate the culture.

Guevorkian & Valles [9] reported that *Paramaecia* change their swimming behaviour in magnetically altered effective gravity, in response to the altered buoyancy of the cells. Coleman et al. [10] investigated the effect of magnetic levitation on growth and cell cycle changes in wild-type yeast cells, concluding that neither the growth nor the cell cycle was affected by the magnetic field when cells were levitated, but that growth was reduced at increased effective gravity. Some selective effects were seen on cells with specific mutation in transcription factors, known to mediate responses to environmental stresses such as gravity and shear stress, indicating that adaptive gene expression was required for the cells to be able to grow normally. Our previous experiments on magnetically levitated *Arabidopsis thaliana* cell cultures have also shown that adaptive responses occur, again detected by changes in the expression of...
transcription factors. In this case, the adaptations were similar to those seen when cells experienced simulated weightlessness in a random positioning machine [11]. (Wilson et al. [12] have also shown that space flight alters bacterial gene expression and virulence, in this case owing to a decrease in the levels of the global gene regulator Hfq, again indicating the need for adaptation to the conditions experienced during growth in a weightless environment.)

Here we show that magnetic levitation of bacteria in a liquid culture increases the rate of population growth and the final cell density of the culture. We investigate the mechanism leading to this enhancement.

2. INITIAL HYPOTHESIS

For these experiments, we chose *Escherichia coli* and *Staphylococcus epidermidis* as examples of human commensal bacteria, and as representatives of the Gram-negative and Gram-positive groups, respectively. We used a specially designed 17 T superconducting solenoid with a closed-circuit cryogenic system to levitate samples of bacterial culture in liquid nutrient broth. The magnet has a vertical bore. The temperature of the bore was kept at 37°C by forced air flow. Using a superconducting magnet to levitate biological organisms and material [10,11,13–15] rather than a resistive magnet is attractive because we can levitate for periods much longer than can be obtained, economically, using a resistive magnet.

2.1. Effective gravity acting on the liquid culture medium

Water, being diamagnetic, is repelled from the strong magnetic field at the centre of the solenoid. The liquid levitates where the magnetic force balances the gravitational force, approximately 75–80 mm above the geometric centre of the solenoid, depending on the solenoid current [16,17]. Following Valles et al. [5], we define the effective gravity acting on the water as \(\Gamma_z = \chi_w B_z^2/\rho_w \mu_0 - g \), where \(B \) and \(B_z = 0 B/\partial z \) are the magnitude of the magnetic field and the magnetic field gradient, respectively; \(\chi_w = -9 \times 10^{-6} \) (SI units) and \(\rho_w = 1000 \text{ kg m}^{-3} \) are the volume magnetic susceptibility and density of water, respectively; \(g = 9.8 \text{ m s}^{-2} \) is the gravitational acceleration at the Earth’s surface and \(\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2} \). At the levitation point \(\Gamma_z = 0 \). Since the culture medium is composed mostly of water, it levitates at the same position, under the same conditions. Note that a positive value of \(\Gamma_z \) indicates a net upward force, and a negative value of \(\Gamma_z \) indicates a net downward force. A more detailed discussion of effective gravity and the variation in \(\Gamma_z \) near the levitation point can be found in the electronic supplementary material, appendix S1.

2.2. Effective gravity acting on the cells

Whether an individual cell floats or sinks in the liquid culture medium depends on Archimedes’ principle, i.e. on the difference between the cell’s weight and the weight of fluid displaced by the cell. In a weightless environment, e.g. in an orbiting spacecraft, both weights are zero, so the cells are neutrally buoyant. We express the net force acting on the cell, including buoyancy forces, as an effective gravity: \(\Gamma_z^{(c)} = \Delta \chi B z^2/(\rho_c \mu_0) - g \Delta \rho/\rho_c \), where \(\Delta \chi = \chi_c - \chi_w \) and \(\Delta \rho = \rho_c - \rho_w \). Here, \(\chi \) is the spatially averaged volume magnetic susceptibility of the cell and \(\rho \) is the spatially averaged (‘buoyant’) density of the cell (i.e. its mass divided by its volume). See the electronic supplementary material, appendix S2.1, for the derivation and additional discussion.

For neutral buoyancy, we require the net force acting on the cell to be zero; that is, we require \(\Gamma_z^{(c)} = 0 \). Outside the magnet, \(\Gamma_z^{(c)} \approx -0.09 g \), since the buoyant density of the bacterial cells is \(\rho_c \approx 1090 \text{ kg m}^{-3} \) [18]; hence, we expect the cells to sediment in the culture medium, outside the magnet. We now consider whether the diamagnetic force on the cells and on the fluid can prevent the cells from sinking. We estimate \(\Delta \chi = -(8 \pm 3) \times 10^{-7} \) experimentally by measuring the levitation position of a bacterial pellet in the bore [19]; most of the experimental error in this measurement is owing to uncertainty in the water content of the bacterial pellet. From this result, we estimate that \(\Gamma_z^{(c)} = (-0.01 \pm 0.03) g \) at the levitation point of the culture medium. This analysis suggests that it is possible to achieve a pseudo-weightless condition in the magnetically levitated bacterial culture, in the sense that the fluid medium is weightless and the cells are simultaneously neutrally buoyant in the fluid (\(\Gamma_z^{(c)} \approx 0 g \)).

2.3. Estimate of the effect of levitation on the sedimentation rate of the cells

Based on our experimental measure of \(\Delta \chi \), we estimate that the sedimentation rate should be reduced to \((10 \pm 30) \) per cent of the rate exhibited outside the magnet. The negative percentage encompassed by the uncertainty in this value indicates that our estimate includes the possibility that the cells will float to the surface, rather than sink. We have expressed the sedimentation rate as a percentage of the 1 g control rate, rather than an absolute value, since the rate is dependent on the cell size. The calculation is outlined in the electronic supplementary material, appendix S2.2.

3. CONTROLS

We use culture volumes of more than 1 ml to allow for sampling during the experiment and to ensure that the culture volume is not significantly affected by evaporation. Strong magnetic fields of the order of 10 T are required to magnetically levitate culture volumes of this size; in our experiments, \(B = 12.3 \text{ T} \) at the levitation point. There is evidence that \(B \) fields of this strength affect biological organisms at the cellular level. For example, striking changes were observed in the orientation of cell-division cleavage planes in developing frog embryos in a static field \(B = 1 \text{ T} \) [20,21]. Stresses can arise from a magnetic torque resulting from anisotropy in the magnetic susceptibility of structures [21,22]. The significance of these forces depends on whether the energy associated with such forces is
larger than the thermal energy scale. Another possibility is that the magnetic field can affect biochemical kinetics [23]. Internal stresses in a biological cell can also be altered in a gradient magnetic field, owing to variations in the magnetic susceptibility of the cell’s constituents. Valles et al. [5] performed experiments on magnetically levitated frog embryos, concluding that levitation reduced the gravity-induced internal stresses within the cell.

We shall not analyse these possibilities in further detail here. However, by using a control sample placed at the centre of the solenoid coil, enclosing the \(\Gamma = 1g \) point, we can distinguish experimentally between the effects of magnetic forces that are proportional to the field–field gradient product \(BB' \), and magnetic effects that depend only on \(B \) [5,24]. As an additional control, a sample container was also placed below the centre of the solenoid, enclosing the \(\Gamma = 2g \) point, where gravity and the magnetic force are additive, and \(B = 12.3 \, T \). For convenience, we label the sample containers \(0g^* \), ‘1g*’ and ‘2g*’ corresponding to the effective gravity enclosed by each container; the asterisk on the label indicates the sample is in a strong magnetic field, either \(16.3 \, T \) at \(1g^* \) or \(12.3 \, T \) at \(0g^* \) and \(2g^* \). The variation of \(\Gamma \) in the \(0g^* \) container is discussed in the electronic supplementary material, appendix S1, and shown in the electronic supplementary material, figure S1. We use the label ‘1g’ to indicate the control sample, grown outside the magnet.

4. REDUCED SEDIMENTATION RATE

To test our hypothesis that levitation inhibits sedimentation of the bacteria in the liquid culture, we used \(E. \) coli transformed to a green fluorescence protein (GFP) to visualize the distribution of cells within the culture vessel. Cultures were exposed to the magnetic field, one at each of the positions \(0g^* \), \(1g^* \) and \(2g^* \), simultaneously at a temperature of 37°C for 18 h. Figure 1 shows that the sedimentation rate of cells was reduced in the \(0g^* \) position, compared with the \(1g^* \) sample, indicated by the higher optical density of the \(0g^* \) culture throughout the tube. Sedimentation at the \(2g^* \) position was enhanced compared with the \(1g^* \) sample: the supernatant was almost clear, with the cells forming a layer on the bottom of the vessel. In separate experiments, the optical density (OD\(_{600nm}\)) \(OD_1 \) of the supernatant was measured to determine the cell density remaining in suspension. A second optical density measurement \(OD_2 \) was taken immediately after vortexing each sample to determine the OD value of an evenly suspended culture. The fraction of sedimented cells after the 18 h period is \(S = 1 - OD_1/OD_2 \), which is proportional to the sedimentation speed and the time of incubation. The \(OD_1 \) of the \(0g^* \) culture was higher than that of the \(1g^* \) sample in the magnet, and the \(1g \) control outside the magnet. The fraction of sedimented cells at the \(0g^* \) position was \(S(0g^*) = 0.38 \pm 0.06 \), whereas in the \(1g^* \) control, \(S(1g^*) = 0.54 \pm 0.01 \). In the \(1g \) control outside the magnet, \(S(1g) = 0.50 \pm 0.01 \). The uncertainties are one standard deviation. These results indicate that significantly more bacteria remain in suspension in \(0g^* \) than in the \(1g^* \) and \(2g^* \) samples. There is a small difference between \(S(1g^*) \) and \(S(2g^*) \) which may be owing to some mixing as the \(1g^* \) sample is withdrawn from the magnetic field. The ratios \(S(0g^*)/S(1g^*) \) and \(S(0g^*)/S(2g^*) \) lie just outside the range we estimate from the Stokes drag analysis. This suggests that another mechanism may be influencing the apparent sedimentation rate. In §7, we discuss experiments in which we imaged the samples in situ. These experiments show that the gradient magnetic field can cause convective stirring where there is a gradient in the dissolved oxygen concentration.

5. EFFECT ON GROWTH PHASES

To investigate the effect of levitation on the growth of these cultures, cell density was measured as a function of time by taking optical density (OD\(_{600nm}\)) measurements at approximately 1 h intervals to determine growth rate and lag time. Cultures of untransformed \(E. \) coli and \(S. \) epidermidis were grown within the magnet at the three different positions \(0g^* \), \(1g^* \) and \(2g^* \). In addition, control samples were incubated outside the magnet \((1g) \). Cultures within the magnet bore and the \(1g \) control sample were incubated statically at 37°C. Each sample was mixed prior to measurement. Figure 2 shows that for both \(E. \) coli and \(S. \) epidermidis cultures grown at \(0g^* \), an overall enhancement of growth was apparent compared with the static \((1g) \) control cultures. No difference in the lag phase or initial growth rate was observed when cultures had low cell density. However, the cultures at \(1g^* \) and \(2g^* \) and the \(1g \) control all showed a lower initial growth rate than the \(0g^* \) cultures (figure 2). The final cell density in the \(0g^* \) samples was approximately 1.5 times that of the other cultures. These results are reproducible and statistically significant. The growth in the \(1g \) control is comparable with that in the \(1g^* \) sample, demonstrating that, in the absence of a magnetic field gradient, the magnetic field has no observable effect on the growth. For comparison, we performed an experiment on a shaken culture outside the magnet, in which we expect the liquid to be fully aerated. We found that, although growth was enhanced at \(0g^* \) compared with all the static cultures, it was not as high as that achieved by the aerated culture outside the magnet (table 1). Liquid loss via evaporation was insignificant because the culture vessels were airtight.
6. OXYGEN AVAILABILITY LIMITING GROWTH

6.1. Experiments with perfluorodecalin

The lower growth rate in the static cultures, compared with the shaken cultures, suggests that availability of \(O_2\) is limiting growth in the static cultures. To test this experimentally, we performed experiments in tubes containing different volumes of liquid medium \(V\). We also performed experiments in tubes of different diameters, to see the effect of varying the area of the air–liquid interface \(A\). We found a clear positive relationship between final cell number density and \(A/V\) (figure 3). This result lends weight to the hypothesis that the availability of \(O_2\) is limiting growth in these experiments, since the \(O_2\) flux across the air–water interface is proportional to \(A\) and the \(O_2\) concentration of the liquid resulting from this flux is inversely proportional to \(V\). To confirm that availability of \(O_2\) is limiting growth, cultures were oxygenated from the bottom of the vessel by using a perfluorocarbon (PFC) artificial gas carrier: perfluorodecalin. PFC has a high saturation capacity for \(O_2\), and is both more dense than, and immiscible with, water; it forms a discrete layer at the bottom of the culture and has been shown previously to enhance growth of bacterial cultures [25]. All the samples with PFC showed enhanced growth compared with samples without PFC. Under these conditions, the final cell number density of the 0\(g^*\) sample was as high as in the aerated cultures and the 1\(g^*\), 2\(g^*\) and 1\(g\) cultures all grew as well as the 0\(g^*\) sample without PFC (table 1). This confirms that lack of \(O_2\) is limiting growth in the lower region of the static cultures. Further, these results suggest a reason for the 0\(g^*\) growth enhancement: magnetic levitation increases the availability of \(O_2\). We test this hypothesis by a gene expression study in the following section. The fact that the growth rate of the 1\(g^*\) culture is increased by inclusion of the PFC layer indicates that the magnetic field does not limit growth in these experiments.

6.2. Changes in gene expression

In adapting to different growth conditions, \(E. coli\) alters the composition of its respiratory pathways, changing the amount of different terminal oxidases to optimize its respiratory chain according to the substrates present and the physiological needs of the cell. Cytochrome \(b_\text{ox}\), encoded by the \(cyo\text{ABCDE}\) operon, operates at high oxygen concentration and has low affinity for oxygen. Expression of the \(cyo\) operon is decreased under anaerobic conditions by the global anaerobic regulators \(ArcA\) and \(Fnr\) [26]. The \(appB\) cytochrome bd-type oxidase has a high oxygen affinity and is encoded in an operon with \(appA\) (pH 2.5 acid phosphatase). Their expression is regulated by \(appY\) and stress-response sigma factor \(RpoS\) under microaerobic conditions, when \(appB\) may be required for efficient electron transport [25]. We used microarray-based gene expression profiling to investigate the response to \(O_2\) depletion. RNA was extracted from each of the \(E. coli\) cultures grown under the different test conditions when the cells reached mid-exponential growth phase (OD\(_{600nm}\) = 0.5) and samples analysed on an \(E. coli\) oligonucleotide array (table 2). Expression of genes in the \(cyo\) operon were consistently approximately twofold upregulated in the 0\(g^*\) samples compared with all other static samples. No significant difference in expression of these genes was detected between the 0\(g^*\) static culture and the 1\(g\) aerated culture. The opposite pattern was seen for genes in the \(app\) operon; the expression of these genes was enhanced at 2\(g^*\). Additionally, the anaerobic growth regulator \(fnr\) was downregulated in the 0\(g^*\) compared with 2\(g^*\) sample. In general, genes known to be associated with anaerobic adaptation were more highly expressed in samples with the lowest growth. Changes in expression of \(cyoA\) and \(appB\) were also confirmed by measuring mRNA levels using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) analysis and showed that the expression of the \(cyoA\) gene was enhanced at 0\(g^*\) compared with the control (table 3), with the 1.5-fold change observed being similar to results obtained from the microarray analysis. The
Table 1. Effects of culture conditions on cell growth. Cultures were grown under different test conditions for 18 h at 37°C in the 0g*, 1g* and 2g* positions. The 1g control samples were grown outside the magnet either statically (1g) or with shaking (1g aerated). Optical density (OD_{600 nm}) of samples was determined after 18 h. (a) Final optical densities of cultures of *E. coli* grown without and with O2-gassed perfluorodecalin (PFC) layer at the bottom of the culture. (b) Ratios of final cell density values of *E. coli* and *S. epidermidis* cultures. Only *E. coli* static cultures were oxygenated from the bottom of the culture by adding O2-gassed PFC. n.d. not determined.

<table>
<thead>
<tr>
<th>condition</th>
<th>without PFC</th>
<th>with PFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0g*</td>
<td>1.9 ± 0.3</td>
<td>2.3 ± 0.1</td>
</tr>
<tr>
<td>1g*</td>
<td>1.4 ± 0.1</td>
<td>1.9 ± 0.1</td>
</tr>
<tr>
<td>2g*</td>
<td>1.3 ± 0.2</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>1g</td>
<td>1.3 ± 0.1</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>1g aerated</td>
<td>2.4 ± 0.2</td>
<td>n.d.</td>
</tr>
<tr>
<td>(b) test comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>E. coli</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>0g*/1g</td>
<td>1.73 ± 0.35</td>
<td>1.24 ± 0.05</td>
</tr>
<tr>
<td>1g*/1g</td>
<td>1.09 ± 0.03</td>
<td>1.06 ± 0.07</td>
</tr>
<tr>
<td>2g*/1g</td>
<td>1.04 ± 0.08</td>
<td>1.01 ± 0.02</td>
</tr>
<tr>
<td>0g*/1g*</td>
<td>1.59 ± 0.29</td>
<td>1.16 ± 0.03</td>
</tr>
<tr>
<td>0g*/1g aerated</td>
<td>0.9 ± 0.05</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Figure 3. Relationship between final cell density and liquid–air interface area/sample volume. Samples were incubated for 18 h in tubes with different dimensions (see the electronic supplementary material, table S1). The optical density (OD_{600 nm}) after 18 h shows a clear increase with A/V; A is the area of the liquid–air interface and V is the sample volume. (a) OD of the 0g* sample, OD(0g*), relative to the OD of the 1g* control sample in the magnet, OD(1g*). (b) OD of the 0g* sample, OD(0g*), relative to the OD of the 1g control outside the magnet, OD(1g). (c) OD of the 1g control. The scatter in the data points gives a good indication of the experimental uncertainty. Lines show the least-squares linear fit to the data. The gradients of the lines are, including standard errors, 8 ± 0.11 and 6.5 ± 1.0 µm μm⁻² for the data in (a), (b) and (c), respectively.

expression of the *appB* gene was downregulated at 0g* but was enhanced at the 2g* position compared with the control by approximately twofold. Importantly, no differences in level of expression of these cytochromes were found between the 1g* and 1g static samples, indicating that their expression was not influenced by the magnetic field or by differences in distribution of other nutrients influenced by the magnetic field, but rather by differences in oxygen availability under the different test conditions.

7. MAGNETICALLY INDUCED CONVECTION

One might speculate that the increase in oxygen availability in the levitated (0g*) sample may be owing to the observed reduction in the rate of sedimentation. This allows bacteria to remain closer to the surface where the liquid is enriched by oxygen diffusing across the air–liquid interface. While this is a plausible hypothesis, we also investigated whether previous studies of magnetically induced convection in water could be relevant [13,27–32]. Molecular oxygen is paramagnetic and is attracted to a magnetic field: molecular oxygen above the solenoid is pulled towards the centre of the solenoid, where the field is largest. This force enhances the buoyancy of objects immersed in a paramagnetic fluid [33–36]. Although the paramagnetism of O2 at room temperature is weaker than that of liquid oxygen, the paramagnetic force on the O2 molecules in air in the bore of our superconducting magnet is nevertheless significant owing to the large gradient magnetic field. This is easily demonstrated by levitating a droplet of water in the magnet: in air, the droplet levitates 6 mm higher than its position in nitrogen gas (at the same temperature and pressure) owing to the additional buoyancy force provided by the paramagnetic force on the O2 molecules in the air [17]. Ueno [37] showed that the paramagnetic force on O2 in the air is strong enough to extinguish a burning candle with a 1.5 T
were harvested at OD$_{600}$ nm and replaced at the liquid–air interface (from the O$_2$[38]. Since O$_2$ in the liquid is consumed by the bacteria, the medium is similarly attracted by the magnetic field and a cold plate at the top. The difference in density can give rise to convection in an entirely analogous way to a temperature-dependent density gradient. In the text-book problem of Rayleigh–Bénard (RB) convection (e.g. [42]), a temperature gradient is established between a hot plate at the base of the liquid and a cold plate at the top. The difference in density between the warm liquid near the base and the cooler liquid at the top causes the system to become unstable to convection when the temperature gradient exceeds a critical value, determined by the Rayleigh number. For example, for 20°C water between plates separated by 1 cm, we expect to observe convection when the temperature gradient exceeds approximately 0.15 K cm$^{-1}$. We now consider an analogous configuration, which will allow us to use the existing theory on RB convection to provide an insight into the present problem: we assume for the moment that the bacteria lie in a layer at the bottom of the vessel, consuming O$_2$, so that, in equilibrium, C decreases linearly from C_b at the liquid–air interface to C_0 at the container bottom. We can define a Rayleigh number for this configuration, in an exact analogy with the thermal gradient, which is well understood. We define an effective liquid density P such that the net vertical force on a volume V of liquid in the magnetic field $F_z = \chi V B^2 H / \mu_0 = \rho_v V g$ can be written $F_z = P V g$, where $P = \rho_v + (\chi - \chi_v) B^2 / (\Gamma \mu_0)$; ρ_v and χ are the liquid density (approximately the same as water) and the volume magnetic susceptibility, respectively. For simplicity, we consider the forces on-axis only, where $\Gamma = \Gamma_z$. Importantly, note that χ depends on the concentration C (here, measured in molecules per m3) of dissolved oxygen in the liquid: $\chi(C) = \chi_v + \gamma C$, where $\gamma = 43 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}/N_A$ is the molecular magnetic susceptibility of O$_2$ at room temperature [41]; N_A is Avagadro’s number. Therefore, the effective density of the liquid P depends on the concentration of dissolved oxygen C. A gradient in the oxygen-dependent effective density can give rise to convection in an entirely analogous way to a temperature-dependent density gradient. We now consider whether this force gradient can cause convection of the liquid medium by comparison with convection driven by a temperature-dependent density gradient, which is well understood.

7.1. Theory

We now consider whether this force gradient can cause convection of the liquid medium by comparison with convection driven by a temperature-dependent density gradient, which is well understood. We define an effective liquid density P such that the net vertical force on a volume V of liquid in the magnetic field $F_z = \chi V B^2 H / \mu_0 = \rho_v V g$ can be written $F_z = P V g$, where $P = \rho_v + (\chi - \chi_v) B^2 / (\Gamma \mu_0)$; ρ_v and χ are the liquid density (approximately the same as water) and the volume magnetic susceptibility, respectively. For simplicity, we consider the forces on-axis only, where $\Gamma = \Gamma_z$. Importantly, note that χ depends on the concentration C (here, measured in molecules per m3) of dissolved oxygen in the liquid: $\chi(C) = \chi_v + \gamma C$, where $\gamma = 43 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}/N_A$ is the molecular magnetic susceptibility of O$_2$ at room temperature [41]; N_A is Avagadro’s number. Therefore, the effective density of the liquid P depends on the concentration of dissolved oxygen C. A gradient in the oxygen-dependent effective density can give rise to convection in an entirely analogous way to a temperature-dependent density gradient.

Growth of liquid bacterial cultures

We now consider whether this force gradient can cause convection of the liquid medium by comparison with convection driven by a temperature-dependent density gradient, which is well understood. We define an effective liquid density P such that the net vertical force on a volume V of liquid in the magnetic field $F_z = \chi V B^2 H / \mu_0 = \rho_v V g$ can be written $F_z = P V g$, where $P = \rho_v + (\chi - \chi_v) B^2 / (\Gamma \mu_0)$; ρ_v and χ are the liquid density (approximately the same as water) and the volume magnetic susceptibility, respectively. For simplicity, we consider the forces on-axis only, where $\Gamma = \Gamma_z$. Importantly, note that χ depends on the concentration C (here, measured in molecules per m3) of dissolved oxygen in the liquid: $\chi(C) = \chi_v + \gamma C$, where $\gamma = 43 \times 10^{-9} \text{ m}^3 \text{ mol}^{-1}/N_A$ is the molecular magnetic susceptibility of O$_2$ at room temperature [41]; N_A is Avagadro’s number. Therefore, the effective density of the liquid P depends on the concentration of dissolved oxygen C. A gradient in the oxygen-dependent effective density can give rise to convection in an entirely analogous way to a temperature-dependent density gradient.

Table 2. Comparison of qRT-PCR and microarray data for cyoA and appB.

Samples of RNA extracted for the array experiments from four independent replicates of cells grown in altered effective gravity at 37°C in the magnet bore (0g* or 2g*) or statically outside the magnet (1g) were used for qRT-PCR analysis. Cells were recovered from each culture for RNA extraction when OD$_{600}$ nm = 0.5 for RNA extraction to minimize effects caused by changes in cell population and associated depletion of gases and nutrients. Total RNA was extracted from four independent replicates and used for microarray analysis. Data were analysed using GeneSpring GX 7.3, and normalized against 50% of signal for each independent array and filtered using p-value = 0.05.

<table>
<thead>
<tr>
<th>test conditions</th>
<th>gene</th>
<th>gene product</th>
<th>fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g* versus 1g*</td>
<td>cyoA</td>
<td>cytochrome o ubiquinol oxidase subunit II</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>cyoB</td>
<td>cytochrome o ubiquinol oxidase subunit I</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>appA</td>
<td>phosphohydride phosphorylase</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>appC</td>
<td>cytochrome bd-II oxidase, subunit I</td>
<td>0.45</td>
</tr>
<tr>
<td>0g* versus 2g*</td>
<td>cyoB</td>
<td>cytochrome o ubiquinol oxidase subunit I</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>appB</td>
<td>cytochrome bd-II oxidase, subunit II</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>appC</td>
<td>cytochrome bd-II oxidase, subunit I</td>
<td>0.2</td>
</tr>
<tr>
<td>0g* versus 1g</td>
<td>cyoD</td>
<td>cytochrome o ubiquinol oxidase subunit IV</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>cyoE</td>
<td>protoleme IX farnesyltransferase</td>
<td>2.12</td>
</tr>
<tr>
<td>1g* versus 1g aerated</td>
<td>cyoB</td>
<td>cytochrome o ubiquinol oxidase subunit I</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>appB</td>
<td>cytochrome bd-II oxidase, subunit II</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>appC</td>
<td>cytochrome bd-II oxidase, subunit I</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 3. Comparison of significant fold changes in expression of cytochromes and fnr.

Comparison of significant fold changes in expression for genes involved in cytochrome regulation in E. coli K12 MG1655. Samples were exposed to altered effective gravity at 37°C in the magnet bore (0g* or 2g*) or grown outside the magnet (1g) either statically or aerated. All samples were harvested at OD$_{600}$ nm = 0.5 for RNA extraction and microarray analysis. Data were analysed using GeneSpring GX 7.3, and normalized against 50% of signal for each independent array and filtered using p-value = 0.05.

<table>
<thead>
<tr>
<th>test conditions</th>
<th>gene</th>
<th>fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0g* versus 1g*</td>
<td>cyoA</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>cyoB</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>appA</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>appC</td>
<td>0.45</td>
</tr>
<tr>
<td>0g* versus 2g*</td>
<td>cyoB</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>appB</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>appC</td>
<td>0.2</td>
</tr>
<tr>
<td>0g* versus 1g</td>
<td>cyoD</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>cyoE</td>
<td>2.12</td>
</tr>
<tr>
<td>1g* versus 1g aerated</td>
<td>cyoB</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>appB</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>appC</td>
<td>0.4</td>
</tr>
</tbody>
</table>
convection problem,
\[
Ra^* = \frac{\alpha \Gamma^3 \Delta C}{D \nu}.
\]

Here, \(\Delta C = C_0 - C_1; h \sim 1 \text{ cm} \) is the depth of the liquid, \(D \sim 3 \times 10^{-9} \text{ m}^2 \text{ s}^{-1} \) is the diffusivity of \(\text{O}_2 \) molecules in the medium at 37°C (approximately the same as that in water; [43]), \(v \sim 1 \times 10^{-6} \text{ m}^2 \text{ s}^{-1} \) is the kinematic viscosity of the medium and \(\alpha \) is the fractional change of \(P \) with \(C \),
\[
\alpha = \frac{1}{T} \left(\frac{\partial P}{\partial C} \right).
\]

Note that the molecular diffusivity \(D \) and the concentration difference \(\Delta C \) are the analogues of the thermal diffusivity and temperature difference, respectively, in the thermal convection problem. Poodt et al. [44] used a Rayleigh number for analysing the results of the similar problem of mass-transport in magnetically levitated crystal growth, although they do not introduce the concept of effective density explicitly. We emphasize that \(Ra^* \) is not the same as the ‘magnetic Rayleigh number’ that characterizes convection driven by temperature-induced changes in fluid magnetization (e.g. [45]). In the present problem, the \(\text{O}_2 \) concentration gradient is responsible for convection, not the temperature, which is uniform throughout the liquid. Since the diffusivity of \(\text{O}_2 \) in air is \(\sim 1 \times 10^4 \) times larger than in water [46], we can assume that there is a negligible \(\text{O}_2 \) concentration gradient in the air above the liquid. Hence, we assume that the concentration of \(\text{O}_2 \) in the surface liquid is approximately the same as in water in equilibrium with the air, which is \(C_0 \sim 1 \times 10^{23} \) molecules per \(\text{m}^3 \) at 37°C [47]. At the container bottom, the bacteria consume \(\text{O}_2 \) until its concentration reaches \(C_0 \approx 0.01 C_0 \), at which point the low \(\text{O}_2 \) concentration limits the activity of the bacteria ([48]; at these cell densities, \(5 \times 10^7 - 5 \times 10^8 \text{ m}^{-3} \), the rate of \(\text{O}_2 \) diffusion through the liquid limits the bacterial \(\text{O}_2 \) consumption). For simplicity, we use the approximation \(C_0 = 0 \). In the \(0g^* \) position, the effective density \(P \) of the \(\text{O}_2 \)-rich liquid at the surface is greater than that of the \(\text{O}_2 \)-poor region below. From existing theory on RB convection, we know that this configuration is unstable above \(Ra^* \sim 2000. \) (Note that the culture at \(2g^* \) is stable against this type of convection since the paramagnetic force on the \(\text{O}_2 \) pulls upward in this location.) Calculating the \(Ra^* \) number for the model system, we find that, within the \(0g^* \) sample, \(Ra^* > 1 \times 10^6 \) on-axis, assuming a constant ‘mean’ \(\Gamma \) in the range 0.01 g to 0.1 g, in this simple model. Hence, we expect our model \(0g^* \) system to be unstable to convection. Although, in the experiments, a fraction of the bacteria is suspended in the liquid, as we demonstrated in §4, and the \textit{E. coli} are also motile, the large \(Ra^* \) number for the model \(0g^* \) system suggests that convection driven by an \(\text{O}_2 \) concentration gradient could be possible under experimental conditions, too.

7.2. Experiment to test for magnetically induced convection

We tested this hypothesis experimentally by performing growth experiments on \textit{E. coli} including the reodox dye resazurin. This blue, water-soluble, dye is reduced, irreversibly, to the pink dye resorufin by reactions associated with bacterial respiration [49]. Resorufin can itself be further reduced to the colourless hydroresorufin by the same processes. However, the second reaction is reversible by \(\text{O}_2 \) [49]. Since the dye molecules are diamagnetic, the magnetic force on each is small compared with the force on an \(\text{O}_2 \) molecule; we measured the susceptibility of the powdered dyes using the Gouy method. Therefore, we do not expect the introduction of the dye to have any effect on the convection. Figure 4 shows cultures containing the dye in the \(0g^* \) and \(2g^* \) positions, and in a control sample (1g) outside the magnet. The photographs were obtained \textit{in situ}, 6 h after introduction of the dye. Unlike the experiment performed to measure growth, where samples were mixed prior to sampling, these static cultures were left undisturbed. Just after the dye was introduced, all samples had a uniform blue colour, but turned pink after approximately 2 h owing to bacterial aerobic respiration. The pink colour of the 1g control sample faded to colourless after a further 1–2 h, as the dissolved \(\text{O}_2 \) was depleted and the resorufin was further reduced. However, close to the air–liquid interface, the liquid remained pink owing to \(\text{O}_2 \) diffusion across the interface, which prevented the reduction of resorufin to hydroresorufin. In contrast, the colour of the sample in the \(0g^* \) position did not fade to colourless, remaining bright pink (including in the region at the bottom of the container), except for the appearance of two paler oval-shaped areas. Comparison with the control sample suggests that within these pale ovals, the \(\text{O}_2 \) concentration must be lower than in the rest of the fluid. We also note that the oval shapes of these regions are reminiscent of the shape of stagnant regions in thermal convection cells [42]. These two observations suggest that the concentration of dissolved \(\text{O}_2 \) \textit{outside} the oval regions is increased by convective transport of \(\text{O}_2 \) from the relatively \(\text{O}_2 \)-rich surface liquid to the rest of the sample. The fluid within the ovals stagnates, as is typical in a convection cell, and therefore \(\text{O}_2 \) levels in these regions are depleted by bacterial respiration, allowing resorufin to be reduced to its colourless form. Since the paramagnetic force on the \(\text{O}_2 \) in the \(2g^* \) sample acts upwards, we expect these samples to be stable against paramagnetic \(\text{O}_2 \) convection. This is evident from the well-defined pink layer at the top of this container.

Since the nutrient broth contains paramagnetic metal ions, \(\text{Fe}^{3+}, \text{Cu}^{2+}, \text{Mn}^{2+} \), in concentrations comparable with \(C_0 \), one might ask whether these ions could also give rise to convection, since the bacteria require these ions for their metabolic processes. However, Bovallius & Zacharias [50] showed that, in nutrient broth, these ions are present at sufficient concentration to avoid rate-limiting the bacterial growth. Hence, we do not expect a significant concentration gradient of these ions to arise; we emphasize that a concentration \textit{gradient} is required to generate convection by this mechanism. Conversely, since we have shown that \(\text{O}_2 \) depletion limits growth in our
8. CONCLUSION

From our experimental data, we attribute the increase in bacterial growth rate and higher final cell density in the 0g* samples to greater oxygen availability. The effect becomes enhanced at high cell density when the respiration of the bacteria rapidly depletes oxygen levels. This explanation is supported by the observations that (i) the 0g* sample supplemented with PFC behaves as a uniformly aerated culture and (ii) the anaerobic adaptation genes were more strongly induced in the 1g* and 2g* cultures, confirming that they were experiencing oxygen depletion. We have shown that the diamagnetic force can directly affect the sedimentation rate of a bacterial culture. We have also demonstrated that the gradient magnetic field in the 0g* position has a significant effect on the transport of O2 in the liquid culture: the consumption of O2 by the living cells and its replenishment by O2 diffusing across the liquid–air interface can generate convection in the magnetic field, analogous to the thermal, RB convection process. It is probable that the enhanced availability of O2 in 0g* is owing to this latter effect. Diamagnetic levitation has the potential to be a powerful technique to study the effects of weightlessness on biological cells, to complement existing Earth-based techniques such as clinorotation and random positioning. However, for diamagnetic levitation to be a useful model of the weightless space environment, where density-driven convective transport is absent, paramagnetically driven convection of O2 should be prevented. One possibility is to perform experiments on anaerobically metabolizing organisms, or in non-liquid cultures [51].

9. MATERIAL AND METHODS

9.1. Bacterial cultures

Escherichia coli K12 MG1655 and *S. epidermidis* NCTC11 047 were grown in nutrient broth (NB; Oxoid, UK). GFP+ bacteria were *E. coli* TOPO(pSB2999) (F[–]rpsL16,subtilis::gfp) in pDEST R4-R3; P.J. Hill, University of Nottingham) which were grown in NB supplemented with ampicillin (50 µg/ml^{–1}). All cultures were grown at 37°C. Aerated cultures were shaken at 150 r.p.m.

9.2. Experimental levitation magnet system

The superconducting solenoid has a 50 mm diameter vertical bore, open to the laboratory at both ends (see the electronic supplementary material, figure S2). A closed-cycle coolant system allows the magnet to run at high magnetic field on time scales of the order of several months. A constant mean temperature of 37°C in the bore was maintained, with variation over time less than 0.2°C, by temperature-regulated forced air flow with feedback control. The temperature-controlled chamber consists of an acrylic tube (length 60 cm, internal diameter 44 mm), inserted into the magnet bore, containing three specimen tubes (25 mm internal diameter, 25 ml capacity), one at each of the 0g*, 1g* and 2g* positions (see the electronic supplementary material, figure S2).
material, figure S3). The $1g^\ast$ sample is located at
the centre of the coil; the $0g^\ast$ and $2g^\ast$ samples are located
75 mm above and below the $1g^\ast$ position, respectively.
The temperature of each sample was monitored by a
thermocouple in contact with each specimen tube.
The effect of magnetic field up to 17 T on the
thermocouples was negligible.

9.3. Growth experiments
Cultures were inoculated into fresh NB at an
OD$_{600nm}$ = 0.05. The growth experiments and sedimen-
tation experiments presented in §§4 and 5 were
performed in 25 ml containers (25 mm internal diam-
eter, 50 mm tall). The containers were filled with the
liquid culture to a depth of 15 mm. The experiments
to determine the effect of the liquid surface area to
volume ratio (Ω) were performed in containers of varying
 sizes and culture volumes; their dimensions are
summarized in the electronic supplementary material,
table S1. Samples were exposed to $0g^\ast$, $1g^\ast$ or $2g^\ast$
for varying periods of time, in the dark at 37 \pm 0.1°C.
Each sample was removed from the magnet, mixed,
and its cell numbers determined at approximately 1 h
intervals to determine growth rate and lag time. Cell
number was determined by viable count or by optical
density (OD$_{600nm}$). In the experiments to visualize con-
vection (Ω), spectrophotometer cuvettes (10 mm x
10 mm x 45 mm) were filled with the liquid culture
to a depth of 12 mm and incubated at $0g^\ast$, $1g^\ast$, $2g^\ast$ and
$1g$ at 24°C; the lower temperature slowed bacterial
growth to allow changes within the fluid to be visual-
ized more easily. Resazurin was used at a final
concentration of 67 mg ml$^{-1}$.

9.4. Perfluorocarbon
Perfluorodecalin (Flu Tec PP6) liquid was oxygenated
for 20 min with 100 per cent oxygen gas and dispensed
as 4 ml aliquots in sample tubes. For growth experi-
ments, 4 ml of bacterial suspension was overlaid on
the PFC and samples exposed to altered gravity in
the magnet for 16 h. The position of the sample in the
magnet bore was altered to compensate for the raised
height of the growth medium owing to the presence of
the PFC layer in the bottom of the tube. Data were
analysed using the one-way ANOVA and Tukey’s pair-wise comparisons post hoc analysis with a 95% CI, using SPSS software.

9.5. Microarray analysis
Samples were exposed to each test condition and cells
harvested in the mid-exponential phase of growth and
four independent replicates of each experiment were
performed. Total RNA were extracted and labelled
using the protocol outlined in MessageAmp II-Bacteria.
RNA (700 ng) was labelled with 5-(3-aminoallyl)-UTP.
Samples (5 μg) of RNA were labelled with Cy5 using
NHS-ester reactive dye packs and purified using
RNaseasy MiniElute columns. The DNA reference samples
(1 μg) were labelled using the Invitrogen ‘BioPrime
DNA labelling system’, with Cy3-dCTP. Agilent
MG1655 microarray slides were hybridized at 65°C for
17 h and scanned at 5 μm resolution using the extended
dynamic range (high 100%, low 10%). Data were ana-
lysed using Agilent FEATURE EXTRACTION software and
imported into the GENESPRING GX package, normalized
per chip to 50 per cent of signal and genes whose nor-
malized expression levels changed twofold or more
were identified by applying a t-test ($p = 0.05$). Differen-
tially transcribed genes were divided into functional
groups using COG and KEGG. A complete analysis of
genes involved in oxidative phosphorylation pathway
with a significantly different level of expression is
presented in the electronic supplementary material,
table S2.

9.6. Quantitative real-time polymerase chain
reaction (qRT-PCR)
All qRT-PCR experiments were performed in triplicate
on RNA used for microarray analysis and cDNA was
synthesized from 2 μg RNA. Custom TaqMan assays for
csgA, appB and envZ genes were used (see the elec-
tronic supplementary material, table S3). The thermal
profile employed was 50°C for 2 min, 95°C for 10 min,
and 40 cycles of 95°C for 15 s, 60°C for 1 min. Average
C_T values and standard deviation were calculated for
the three replicates. $\Delta\Delta C_T$ was calculated by the differ-
ence between ΔC_T of test samples ($0g^\ast$, $1g^\ast$, $2g^\ast$ and $1g$
aerated) and control sample ($1g$ static).

C.E.D., O.L., R.J.A.H. and P.A. performed experiments;
designed experiments; C.E.D., O.L., C.E.D.R. and R.J.A.H.
analysed data; and C.E.D., O.L., R.J.A.H., L.E. and
C.E.D.R. wrote the paper. We thank the technical staff in
the School of Physics, especially D. A. Holt, P. Smith,
S. R. Booth, S. Nankervis and I. Taylor, for assistance in
constructing the temperature-controlled chamber and in situ
imaging hardware, and P. J. Hill for supplying the GFP
bacteria. This work was supported by a Basic Technology
Grant from EPSRC, UK; grant nos. GR/S83005/01 and
EP/G037647/1.

REFERENCES
1 Cogoli, A. 2006 Cell biology. In Fundamentals of space
biology: research on cells, animals, and plants in space
(eds G. Clément & K. Slenzka). Space Technology
Press/Springer.
2 van Loon, J. J. W. A. 2007 The gravity environment in
space experiments. In Biology in space and life on earth:
effects of spaceflight on biological systems (ed. E. Brinck-
mann), pp. 17–32. Weinheim, Germany: Wiley-VCH.
3 Beaunog, E. & Tournier, R. 1991 Levitation of water and
III 1, 1423–1428. (doi:10.1051/jp3:1991199)
4 Berry, M. V. & Geim, A. K. 1997 Of flying frogs and levi-
18/4/012)
1999 Stable magnetic field gradient levitation of Xenopus
laevis: toward low-gravity simulation. Biophys. J. 73,
1130–1133. (doi:10.1016/S0006-3495(97)78145-1)
6 Simon, M. D. & Geim, A. K. 2000 Diamagnetic levitation:
floating frogs and floating magnets. J. Appl. Phys. 87,

J. R. Soc. Interface (2011)

