Spatial dynamics of bar-headed geese migration in the context of H5N1

L. Bourouiba1,* and Jianhong Wu2

1Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
2Centre for Disease Modeling, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Virulent outbreaks of highly pathogenic avian influenza (HPAI) since 2005 have raised the question about the roles of migratory and wild birds in the transmission of HPAI. Despite increased monitoring, the role of wild waterfowl as the primary source of the highly pathogenic H5N1 has not been clearly established. The impact of outbreaks of HPAI among species of wild birds which are already endangered can nevertheless have devastating consequences for the local and non-local ecology where migratory species are established. Understanding the entangled dynamics of migration and the disease dynamics will be key to prevention and control measures for humans, migratory birds and poultry. Here, we present a spatial dynamic model of seasonal migration derived from first principles and linking the local dynamics during migratory stopovers to the larger scale migratory routes. We discuss the effect of repeated epizootic at specific migratory stopovers for bar-headed geese (Anser indicus). We find that repeated deadly outbreaks of H5N1 on stopovers during the autumn migration of bar-headed geese leads to a larger reduction in the size of the equilibrium bird population compared with that obtained after repeated outbreaks during the spring migration. However, the opposite is true during the first few years of transition to such an equilibrium. The age-maturation process of juvenile birds which are more susceptible to H5N1 reinforces this result.

Keywords: avian influenza H5N1; modelling; satellite tracking; bar-headed geese

1. INTRODUCTION

Outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have led to the culling of hundreds of millions of domesticated birds since 2003 (e.g. Stöhr 2005). To date human death cases due to H5N1 account for a cumulative number of more than 400 victims worldwide, most were in contact with poultry prior to diagnosis (Center for Infectious Disease Research & Policy 2009; World Health Organization 2009a,b). Despite the increasing number of human victims, the identification of cases of human-to-human transmission remains rare (Ungchusak et al. 2005; World Health Organization 2008). However, the prospect of human-to-human transmission leading to a major pandemic is at the origin of the intensive monitoring of flu outbreaks around the world in the last decade.

Cases of H5N1 have been inducing outbreaks and death among various wild animal species since the 1990s. Birds of the order of Anseriformes (e.g. ducks, geese and swans) and Charadriiformes (e.g. gulls, terns and waders) are generally considered to be the virus reservoir in nature (Webster et al. 1992; Olsen et al. 2006). Although various definitions of reservoir are possible (Haydon et al. 2002), here we use ‘reservoir’ in order to refer to the bird groups showing relatively low mortality and mild symptoms when infected, and without which the sustainability and spread of the virus into human and domestic bird target populations would not be possible. In 2005, a new highly pathogenic H5N1 strain led to an anomalously high cumulative mortality of more than 6000 reservoir wild birds in central China’s Qinghai Lake (Chen et al. 2005). Among other species, the casualties included 3018 bar-headed geese (Zhao et al. 2006) representing 5–10% of the global population (Javed et al. 2000; Prins & van Wieren 2004; Olsen et al. 2006; Avian Influenza Wildlife & The Environment Web 2008; Bird Life International 2009). This hecatomb was followed by other deadly outbreaks among wild birds in Russia, Mongolia, India, the Middle East, Europe and Africa. The H5N1 virus is now endemic in poultry and local birds in several regions of the world (Chen et al. 2004; Center for Infectious Disease Research & Policy 2008). The conditions favourable for the H5N1 endemicity are still not well understood and remain controversial, particularly considering the recent observations possibly challenging the status of reservoir generally attributed to Anseriformes and Charadriiformes birds.

Following the deadly outbreaks of 2005, migratory birds were designated as the source and spreader of H5N1. In particular, they were thought of as the cause of contamination of poultry. This hypothesis

was quickly adopted by various organizations such as the World Health Organization (2005). Some studies supported this hypothesis, declaring finding H5N1 virus in the excretion of sampled wild birds (Chen et al. 2005, 2006a,b; Liu et al. 2005; Lipatov et al. 2007). However, the methodology used in these studies has been questioned on several occasions (e.g. Feare & Yasué 2006; Yasué et al. 2006; Weber & Stilianakis 2007) based on the issues related to improper identification of the birds sampled, unreported location of capture and possible bias of the sampling itself. The critical authors argued that the lack of precise identification of captured birds did not allow one to conclude on whether the birds sampled were part of a regional or migratory sub-species, whether they were wild or domesticated and, hence, whether they might have been exposed to the virus during migration or locally in nearby farms and shared water bodies.

Low pathogenic avian influenza (LPAI) viruses were previously thought to impart no symptoms to wild birds. Hence, birds were thought of as spreaders of these strains, allowing them to travel over long migratory distances. However, van Gils et al. (2007) captured and monitored migratory Bewick swans (Cygnus columbianus bewickii) in their natural environment and found that the feeding and migratory performance of LPAI-infected birds were altered. In fact, infected birds showed reduced bite and fuel storage rates and delayed migratory schedule when compared with their healthy counterparts. Hasselquist et al. (2007) studied the flight behaviour of red knot (Calidris canutus) in a wind tunnel and found that long flight did not appear to influence immune responses. However, some birds with low antibody response against tetanus refused to take off. This suggested that only birds in sufficiently good health engage in the demanding physical activity of migration. Some domestic birds infected with LPAI viruses showed respiratory symptoms, depression and egg production problems (Alexander 2000). The consequences of these findings on the effect of LPAI on wild birds were discussed in van Gils et al. (2007), where the authors note that the infected birds with reduced bite and fuel storage rates could have delayed departure from all subsequent stopovers. In turn, this accumulated delay could reduce the likelihood of the bird finding advantageous unoccupied breeding territories and result in reduced reproductive output (Kokko 1999). In addition, the delay in reproduction could hinder the late broods to take full advantage of the peak of nutrient availability (Both & Visser 2005). These recent findings on the low pathogenic strain of avian influenza called for a paradigm shift and a forced re-evaluation of the attributed role of wild birds as the main spreads of the deadlier highly pathogenic strains.

The chain of transmission of the highly pathogenic H5N1 strain involves a complex interplay of wild bird movement, poultry trade and their interaction with many local or migratory, wild or domesticated other species. For example, carnivorous animals (e.g. cats and foxes) fed with carcasses of infected dead birds or poultry were observed to excrete the virus. Although infected cats showed symptoms and were able to cause horizontal disease transmission, foxes showed little symptoms (e.g. Kuiken et al. 2004; Reperant et al. 2008). Focusing on wild birds and poultry movements and using a set of 52 H5N1 introduction events worldwide, Kilpatrick et al. (2008) estimated that the likelihood of poultry trade to be the cause of H5N1 introduction events was three times as high as migratory bird movement in Asia. However, the opposite was true for Europe, where migratory bird movement was found to be the most likely cause of the introduction of H5N1. However, a more recent study examining the role of migratory common teal in spreading the virus in Europe did not show a strong link between the two (Lebarbenchon et al. 2009). The study was based on an individual-based model with explicit spatial location. In short, the mechanisms of worldwide spread of H5N1 remain unclear.

The possible indirect infection of domesticated and wild animals in local communities collocated with poultry farming or migratory stopovers illustrates the complexity of the chain of transmission of H5N1. Thus, it appears to be important to incorporate local dynamics of the stopovers along bird migratory routes when modelling the spread of HPAI. In fact, the local dynamics on migratory stopovers appears critical not only to understanding the understanding of the onset of an outbreak in some geographical locations, but also to understanding the ecological impact of endemcity of H5N1 in certain regions where susceptible migratory birds stop. This last aspect is one focus of our study, where the spatial modelling of the seasonal migration of bar-headed geese is presented. We chose to focus on bar-headed geese as example species due to their vulnerability to H5N1, as highlighted by the death toll in the 2005 Qinghai Lake outbreak. In addition, the path of migration of this species is known to pass through a succession of areas where H5N1 is now endemic (see the satellite tracking data of the US Geological Survey (2009)). These data allowed us to capture the key temporal and spatial scales characteristic of the migration of bar-headed geese.

Seminal works on the modelling of bird migration include the study of Weber et al. (1998), who used a stochastic optimization model where birds going through a succession of stopover sites had to choose their migration schedule and fuelling to maximize their reproductive success. Barta et al. (2008) focused on the 1-year annual cycle in a seasonal environment using an optimization model where female birds choose an action among reproduction, foraging, moult ing or migrating. Bauer et al. (2008) investigated the effect of climate-influenced conditions of stopover sites on the schedule of migration for pinkfooted geese, where an optimization model was also used. Dolman & Sutherland (1994) used a population model combining foraging ecology with population biology in order to examine the response of migratory and non-migratory birds to habitat loss. Although these studies attempted to model bird migration, they did not link the local and non-local dynamics of disease spread to migratory birds. More recent studies aiming at linking disease spread and migration include Kilpatrick et al. (2008) and Lebarbenchon et al. (2009). There are also some recent spatio-temporal correlation-type studies aimed to examine the correlation between the presence of
migratory birds in a given location and H5N1 outbreaks (e.g. Gilbert et al. 2006; Si et al. 2009). However, these studies do not address the causality between bird migration and spread of H5N1: neither the impact of bird migration on the spread of avian influenza nor the impact of influenza outbreaks on the migratory bird populations is addressed. As a result, the key aspects of bird population dynamics and the impact of repeated outbreaks on stopovers where HPAI is endemic remain unknown.

In this study, we present a seasonal migration model incorporating both the population dynamics of the birds and the local disease dynamics on stopover sites along the migratory route. The aim of the study is to capture the key links between the population dynamics of the migratory species and the disease endemicity at various points along the migratory routes. We note that the local dynamics of migratory stopovers can involve interactions and cross-contamination between local domesticated birds, local poultry industry and temporary migratory birds residing in the community. However, we start by introducing the impact of H5N1 virus on various stopovers in a simple manner, with the aim to pave the way to a more complete incorporation of disease dynamics in migration models. Indeed, a repeated massive death toll of birds due to H5N1 could have major ecological implications for the long-term dynamics of the species. Hence, we present a model coupling the seasonal migration with the population and disease dynamics on stopovers in order to assess the overall impact of repeated H5N1 outbreaks on the ecology of the migratory birds considered. The proposed model is analysed both mathematically and numerically using data on bar-headed geese from the US Geological Survey (2009). The implications of the results obtained for the conservation and population dynamics of the species are discussed. Finally, a preliminary numerical assessment of the effect of age maturation of the young birds on the species dynamics is also discussed.

2. METHODS

2.1. Formulation of the mathematical model of bird migration

The factors determining the onset and trajectories involved in bird migration are complex and are the subject of active research. Most migratory birds are observed to return yearly to some known stopovers, breeding and wintering sites (Akesson & Hedenström 2007). Despite the complexity of their migratory routes, birds are observed to follow approximately identical migration paths yearly (Alerstam 2006). Their trajectories are schematically represented on Mercator projection maps as curved loops with different spring and autumn arcs. However, whether migratory birds follow orthodromes (great circle route) or loxodromes (rhumb line route) or a combination of both remains unclear (Gudmundsson & Alerstam 1998). In fact, orthodromes are lines of shorter distance on a sphere (appearing curved on Mercator projection maps) which could be more energetically efficient (Akesson & Hedenström 2007); however, other factors such as winds and major geographical barriers (e.g. Sahara and Himalayas) could be even more significant in defining the path of minimum migratory energy (Alerstam 2006). Satellite tracking of birds now provides a valuable asset in helping to identify migratory trajectories and the factors influencing their change. For example, satellite tracking of ospreys between Europe and West Africa led to the identification of larger variation of departure times in the autumn compared with the spring migration, with a higher emphasis on short migration during the spring explained by the higher reproductive pressure at the end of this season. However, key stopovers were shared and persistent from one year to the next (Alerstam et al. 2001). More recently, using satellite tracking, the US Geological Survey (2009) recorded the migration path of a dozen bar-headed geese. The yearly migratory routes of birds were reported on a Mercator projection map and were observed to approximately follow curved routes as seen in figure 1. Not all bar-headed geese breed at the same place. In fact, sub-groups of bar-headed geese breed in central China (e.g. Qinghai Lake area) or even in the Tibet area (Javed et al. 2000). We followed the recorded trajectories of a few of the tracked birds that clearly departed from the north-most breeding ground located in Mongolia and arrived in a wintering ground located in northwest India as discussed in §2.2.

We represent the migratory route by a continuous two-dimensional spatial domain consisting of a succession of elongated flight channels and stopover regions (patches) of small scales compared with the length of the connecting flyways. This approach accounts for the flow at the cross section of the channel, where we neglect the transversal fluctuations of the bird flight velocities. The underlying assumption of this approach is the continuity in the flow of birds in the air. The interaction between the birds, distance between departing flocks and the aerodynamics of the arrangement of birds within a flock or the distance between flocks are not accounted for in this model. The schematic diagrams for the formulation of the model are given in figure 2. The patches are stopover locations, where resources/virus can be shared/transmitted. A succession of \(N + 1 \) stopover regions of surfaces \(S_n \) denoted by \(P_n \) with \(0 \leq n \leq N \). We consider the patches to be of small scale when compared with the overall migratory path, i.e. \(\epsilon \ll L \). In addition, we assume the patches to be circular with radius \(\epsilon \), leading to \(\int_{\partial P_n} \, dy = \pi \epsilon \), with \(\theta = 2\sin^{-1}(l/(2\epsilon)) \). Assuming \(\epsilon \gg l \), then \(\epsilon \approx \pi \), otherwise, considering a smaller patch radius of, for example, \(\epsilon = l/2 \) (as shown in figure 2) leads to \(\int_{\partial P_n} \, dy = \pi \epsilon = \pi l/2 \approx l \).

In our model, we consider a fixed cycle of migration where routes for the autumn and spring migration are distinct, and we assume that the birds share the main stopover locations, which is true for the key water points observed in the data, but not true for all stopovers along the route. Indeed, as discussed in more detail in §2.2, the US Geological Survey data revealed that some of the main stopovers are common to tracked birds (for example, a water point before the longest journey across the Himalayas), while others were not. We consider the direction of a flock trajectory to be
parallel to the virtual contour representing the channel of various geometries in which migratory birds flow. In a natural coordinate, we have x, the direction along the boundaries of the route, and y, the normal away from the centre of curvature. The length of the closed migratory domain in the tangential direction is L. The fixed width of the channel in the y direction is l ($L \gg l$) and $p(x, y, t)$ is the density of the birds. The length of the flyway between two patches P_n centred around x_n and patch P_{n+1} centred around x_{n+1} is $d_{n,n+1} = |x_{n+1} - x_n - 2e|$. U is the average longitudinal velocity of the flocks between stopovers. We consider the cross section of the channel to be small in comparison with the length of the channel in the x-direction and that $\partial p/\partial x \gg \partial p/\partial y$; hence, the density is considered uniform in the y-direction of the flyway. We thus denote by $p(x,y,t) \approx p(x,t)$ in the flyways. In the channel, the number of birds passing a given element cross section dy per unit time is $U p(x,t) n dy$, where n is the unit outward normal to the cross section dy. The seasonality of the migration is taken into account in concordance with the bird location. When the spring migration is initiated, the departure patch P_0 is the southern-most stopover region centred around $x_0 = 0$. It is adjacent to the last wintering P_N centred around $x_N = L$. Patch $P_{N/2}$ is the northern-most breeding ground, where birds spend the summer. The birds spend T_w days in the wintering region P_N, T_s days performing their spring migration from P_0 to $P_{N/2}$, after which they reside in the breeding location ($P_{N/2}$) for T_b days, before undertaking their autumn migration for T_i days towards the wintering ground P_N. The derivation of the conservation of number of birds in the flyways between two patches P_n and P_{n+1} leads to a continuity equation similar to that derived for mass conservation in hydrodynamics (see the electronic supplementary material). It is equivalent to a Lagrangian conservation of bird density with $dp/dt = 0$; hence, a flock of birds travelling at speed U_n with an initial density $p_n(x_1 + \epsilon, t_{n-1})$ at the interface of patch P_{n-1} at time t_{n-1} conserves its density along its trajectory and arrives at the interface of patch P_n at $x_2 - \epsilon$ at time t_n with a density $p(x_2 - \epsilon, t_n) = p(x_1 + \epsilon, t_{n-1})$. The departure and arrival times are related by $t_n - t_{n-1} = t_n - d_{n-1,n}/U_n$, leading to $p(x_1 - \epsilon, t_n) = p(x_1 + \epsilon, t_n - \tau_n)$, where $\tau_n = d_{n-1,n}/U_n$. Considering a constant uniform departure rate per capita m_n on patch P_{n-1}, we obtain the total departure rate at time t_{n-1} as $\frac{\partial P_n}{\partial t_n} U_n p(x_1 + \epsilon, t_{n-1}) dy = \int_{P_{n-1}} m_n p(x, y, t_{n-1}) dx dy = m_n S_{n-1} M^{n-1}(t_{n-1})$, where $M^{n-1}(t) = \int_{P_{n-1}} p(x, y, t) dx dy/S_{n-1}$ is the average density of birds on patch P_{n-1} and ∂P_{n-1} corresponds to the cross section linking patch and flyway. $\int_{P_n} dy \approx l$ is the width of the flyway. Hence, we can relate the number of birds leaving patch P_{n-1} at t_{n-1} per unit time to those entering patch P_n at t_n with $p(x_1 - \epsilon, t_n) = m_n S_{n-1} M^{n-1}(t_n - \tau_n)$. If a constant death rate ρ_n along the flyway linking patches P_{n-1} to P_n is assumed, we obtain a simple modification of the equations (see the electronic supplementary material). We then can proceed in expressing the rate
of change of the number of birds $S_n M^n(t)$ on a patch P_n. On each patch, the number of birds is affected by the incoming and outgoing flux of birds and the local death rates μ_n. Assuming that all patches have approximately the same surface areas, we can reduce the equation on the number of birds to an equation on the average density on patch P_n as the following system of delay differential equations:

\[
\begin{align*}
\dot{M}^0(t) &= e^{-\mu_0 \tau_0} m_0 (t - \tau_0) M^N(t - \tau_0) \\
&\quad - (m_1 + \mu_0) M^0(t), \\
\dot{M}^1(t) &= e^{-\mu_1 \tau_1} m_1 M^0(t - \tau_1) - (m_2 + \mu_1) M^1(t), \\
&\quad \vdots \\
\dot{M}^{N/2}(t) &= e^{-\mu_{N/2} \tau_{N/2}} m_{N/2} M^{N/2}(t - \tau_{N/2}) \\
&\quad + \gamma M^{N/2}(t) \left(1 - \frac{M^{N/2}(t)}{K}\right) \\
&\quad - m_{N/2+1}(t) M^{N/2}(t), \\
&\quad \vdots \\
\end{align*}
\]

and

\[
\begin{align*}
\dot{M}^N(t) &= e^{-\mu_N \tau_N} m_N M^{N-1}(t - \tau_N) \\
&\quad - (m_0(t) + \mu_N) M^N(t),
\end{align*}
\]

where the birth rate is modelled using a logistic growth model accounting for the limiting-carrying capacity of N_{max} number of birds and the intrinsic growth rate of γ and where the density-carrying capacity is $K = N_{\text{max}}/S_N$. Patches P_0 and P_N are assumed to be adjacent and $\tau_0 = 0$ in the remainder of the study of this model. The departure coefficients m_n with $0 \leq n \leq N$ are assumed to be all positive constants, except for $m_0(t)$ and $m_{N/2+1}(t)$ which are T-periodic positive functions, with $T = T_w + T_s + T_b + T_l = 365$ days. The well posedness and threshold dynamics of this system are detailed in the electronic supplementary material.

2.2. Parameters

The parameters to be used are summarized in Tables 1 and 2. Death rates in the wild are difficult to obtain; however, an estimate of $0.55–0.9$ survival probability from one year to the next was given for geese in Schekkerman & Slaterus (2007), depending on the body mass of the birds considered. In the first part of our simulations, juveniles are not distinguished from the rest of the birds and we consider an average survival of 0.725 of the population during the autumn migration and on flight. We consider the winter and spring migrations to have higher death rates than those of the autumn and summer. This is due to both the higher survival rate of various viruses in colder temperatures (e.g. Brown et al. 2007, 2009) and the
The duration of flight and residence on the stopovers current and previous stop sites were also extracted. The average distance and time of flight between the and the date and time since deployment in Mongolia. Tracking was interrupted. From the remaining data, we chose not to use the data of the birds for which the migratory paths (from Mongolia to India) and we tracking data, we focused on the longest southward reported in Javed Geological Survey (2009) website and other data are early spring migration 2009 are accessible on the US Geological Survey 2009; Prins & van Wieren 2004; Olsen et al. 2006; Bird Life International 2009).

Table 2. Parameters of the model for the case of bar-headed geese. The determination of the seasonality and migration durations were done based on the data collected in Javed et al. (2000), Prins & van Wieren (2004) and the satellite tracking of the geese nos. BH08-82098, BH08-41592 and BH08-41720 courtesy of US Geological Survey (2009).

<table>
<thead>
<tr>
<th>Migration Type</th>
<th>Duration</th>
<th>Return Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Migration</td>
<td>15 March – April, $T_s = 46$ days</td>
<td>0.75 (return to breeding location annually)</td>
</tr>
<tr>
<td>Breeding Ground</td>
<td>May – 15 September, $T_b = 138$ days</td>
<td>0.55 – 0.9 (average of 0.725) depending on body mass (Schekkerman & Slaterus 2007)</td>
</tr>
<tr>
<td>Autumn Migration</td>
<td>15 September – 15 November, $T_a = 61$ days</td>
<td>60 000</td>
</tr>
<tr>
<td>Wintering Ground</td>
<td>15 November – 15 March, $T_w = 120$ days</td>
<td>80% of inoculated geese within 8.7 – 12.9 days (Qinghai bar-headed H5N1 virus) (Zhou et al. 2006)</td>
</tr>
<tr>
<td>Goose No. 11753</td>
<td>2 (spring India-to-China Lunggar) (Javed et al. 2000)</td>
<td>1 per day (80% death over 11 days)</td>
</tr>
</tbody>
</table>

world population

30 000 – 60 000 (Javed et al. 2000; Prins & van Wieren 2004; Olsen et al. 2006; Bird Life International 2009)

female/male ratio

more females than males, this ratio varies, e.g. 1 – 1.4 in April in captivity (Lamprecht 1987) or in wild (Prins & van Wieren 2004); we assumed 55 – 45% (1.2 ratio)

egg laying

average 5.3 eggs per mature female with 34% average hatching (Wurdinger 1973)

γ

4.99 \times 10^{-3} \text{ per day} (during 138 days of breeding season)

K

60 000

annual survival rate (ASR)

0.55 – 0.9 (average of 0.725) depending on body mass (Schekkerman & Slaterus 2007)

life expectancy

15 – 20 years, we chose 17 years (≈ 6205 days) (Wurdinger 1973)

μ

8.8 \times 10^{-4} + 1/6205 \text{ per day (ASR of 0.725)}

μ_{spring}

1.64 \times 10^{-3} + 1/6205 \text{ per day (ASR of 0.55)}

μ_{autumn}

8.8 \times 10^{-4} + 1/6205 \text{ per day (ASR of 0.725)}

return rate

0.75 (return to breeding location annually)

H5N1 mortality

2/5 dead inoculated bar-headed geese within 6 – 7 days (Mongolia 2005 virus; Brown et al. 2008), 80% of inoculated geese within 8.7 – 12.9 days (Qinghai bar-headed H5N1 2005 virus) (Zhou et al. 2006)

epizootic duration

May – June 2005 (61 days) in Qinghai Lake (e.g. Chen et al. 2005; Zhou et al. 2006)

$\mu_{\text{H5N1,s}}$

1.46 \times 10^{-1} \text{ per day (80% death over 11 days)}

scarcity of the resources for refuelling on the stopovers along the spring migration in comparison with the autumn migration (Ward et al. 1997). Note that this hypothesis only accounts for natural death and could be jeopardized when considering species heavily hunted during the autumn (e.g. Madsen et al. 2002).

The notion that birds would follow a ‘green wave’ of highly nutritional early growing plants is not incorporated here due to the difficulty in comparing the nutritional intake during the spring versus autumn migrations.

Full data and maps for the bar-headed geese tracked by satellite during the autumn migration of 2008 and early spring migration 2009 are accessible on the US Geological Survey (2009) website and other data are reported in Javed et al. (2000) for another group of bar-headed geese. From the US Geological Survey tracking data, we focused on the longest southward migratory paths (from Mongolia to India) and we chose not to use the data of the birds for which the tracking was interrupted. From the remaining data, we extracted the date of arrival, the length of stay and the date and time since deployment in Mongolia. The average distance and time of flight between the current and previous stop sites were also extracted. The duration of flight and residence on the stopovers varied from days to up to a month in rare cases. This appeared to be due to geographical considerations including the location of the water points and obstacles such as the Himalayas. Based on these data, we estimated the total number of stopovers, the average flight time and the average speed between stopovers based on the following considerations. After the onset of migration in Mongolia, we chose to discard the stopovers where the birds remained for less than a day and those located at less than 100 km from the previous reported stopover. In fact, some birds appeared to fly back and forth in restricted areas a few dozen kilometres away from their original stop. We chose to not account for these local ‘hops’ in the data reporting migration stopovers. As a result, the data of the bar-headed geese tracked led to the identification of an average of five stopovers during the autumn migration and we then assumed the same number of stops along the spring migration. The longest distance travelled continuously was of the order of ≈ 700 km in a few days at a speed of up to ≈ 11 m s$^{-1}$ (BH08-41592) to cross the Himalayas. Elsewhere the birds stopped more frequently and flew at slower speeds, with an average velocity of 1.98 m s$^{-1}$ for the birds considered (2.12 m s$^{-1}$ BH08-41592, 0.95 m s$^{-1}$ BH08-41720, 1.84 m s$^{-1}$ BH08-82098 and 3 m s$^{-1}$ no. 11753). The
time in flight between stopovers was also averaged
between birds and their stopovers, leading us to the
delay of $\tau = 2.6$ days. Note that we excluded the delay
recorded for BH08-41720 as details on the stopover
locations were not all accessible.

Note that the birds stayed for a longer time in one to
two preferential stopover areas close to the breeding
patch before departing for the autumn migration.
These long stopovers in the early stage of the autumn
migration could be explained by the clement weather
in late September and early October. Based on these
numbers, we discuss the model of patches P_0 to P_{12}
with longer stopover durations during the autumn
migration compared with that of the spring and with
migration parameters in table 1.

Concerning the parameters related to the disease
induced death rates, recall that the 2005 epizootic in
central China’s Qinghai Lake led to a death toll of
more than 6000 wild birds of various species (Chen
et al. 2005) among which 3018 were bar-headed geese.
The strains of H5N1 involved would cause the death
of 80 per cent of the inoculated geese (for three week-old
juvenile geese from eastern Zhejiang) within 8.7–12.9
days post-inoculation in Zhou et al. (2006). In Brown
et al. (2008), two out five died in a similar period of
time (bar-headed geese of \approx12 weeks). Assuming the
80 per cent death rate within an average time of 11
days, we deduce a disease induced death rate of
1.46×10^{-1} per day.

3. RESULTS

3.1. One-age group model

Figure 3 shows the periodic seasonal migration func-
tions $m_0(t)$ and $m_{N/2+1}(t)$ used for the simulations of
the one-age group model. Using these functions, we
checked that the model recovers the conservation of
number of birds when setting death and birth to zero
as expected. In addition, a null death rate (in all
patches except the breeding patch) with a non-zero
intrinsic growth rate in the breeding patch leads to
the recovery of the logistic growth dynamics for the
system of patches (see the electronic supplementary
material). From the above parameters, we obtained
a return to the breeding site of approximately 75
per cent for the birds which departed the previous
year. Figure 4a shows the longer term evolution of
the total bird population over 50 years starting from
an initial population at the breeding ground-carrying
capacity (e.g. 60 000). The equilibrium value is
around 40 000 birds varying from 33 000 birds at the
end of the wintering season to up to 43 000 birds at
the end of the breeding season (figure 4b). This equi-
librium is in the range of the estimated world
population of bar-headed geese (30 000–60 000), also
taking into account the captive birds in conservation
reserves.

3.2. Why season matters

We now use the model studied thus far to investigate
the impact of an anomalously high death rate during
the migration at one of the stopover locations and its
influence on the overall species dynamics if it were to
be recurrent. The anomalously high death toll could
be due to repeated local outbreaks of H5N1 as it is
known that H5N1 is now endemic in many regions of
the world (Center for Infectious Disease Research &
Policy 2008).

In figure 5, the H5N1 disease induced death is intro-
duced in various patches, starting from an equilibrium
population of 34 000. For equal duration of residence
(e.g. on P_4 and P_{11}), the average number of birds at
equilibrium is higher when the disease occurs during
the spring migration. The opposite result was expected
and advanced in the literature (e.g. Schekkerman &
Slaterus 2007). In order to assess the influence of the

![Figure 3. Migration cycle functions $m_0(t)$ (red line) and $m_{N/2+1}(t)$ (blue line) controlling the initiation of the spring and autumn migration, respectively. The years of 365 days are indicated with the labels y1 to y10 for year 1 to year 10.](http://rsif.royalsocietypublishing.org/Downloaded from http://rsif.royalsocietypublishing.org/ on April 3, 2017)
time of residence on the previous results, we perform similar simulations with imposing a fictitious residence time. From the data collected for the autumn and spring migrations, we obtain an average residence time of 7.58 days taken for each migration stopover ($m_{\text{average}} = 0.60754$). The resulting equilibrium population is shown in figure 6. Regardless of the location of the high death rate on the autumn migration route, the equilibrium is unchanged. Similarly, the equilibrium remains the same when changing the location of the infected patch on the spring route. However, the same death rate when introduced anywhere during the spring migration led to an average annual size of the equilibrium population that is higher than that when introduced in the autumn migration. The transition to this equilibrium is characterized by an opposite trend. In the first years of high death toll, the population appears to be more affected when the death

Figure 4. Over a simulation of 50 years, the bird population reaches an equilibrium value of 40 000 total bird population. The model equilibrium is reached for various initial conditions, for example (a) $f_0(0) = 60\,000$ and (b) the equilibrium population on the wintering and breeding grounds is shown over 4 years. (a) Red line, total population on stopovers. (b) Red line, population at wintering ground; green, population at breeding ground.

Figure 5. Time series of the total population (a) at equilibrium and (b) during transition to equilibrium after the introduction of repeated H5N1 disease induced death in patches of various residence time, starting from an equilibrium population of 34 000. (a) Thick red line, no H5N1; green line, disease on P_0; thin blue line, disease on P_1; black line, disease on P_5; thin red line, disease on P_9; grey line, disease on P_{10}; thick blue line, disease on P_{11}. (b) Red line, disease on P_4; blue line, disease on P_4; blue line, disease on P_{11}.
toll is introduced on the autumn migration route, before reversing to an equilibrium where the opposite is true.

3.3. Role of age structure

For bar-headed geese, females do not reach maximum reproduction efficiency before age 4 (Wurdinger 1973; Lamprecht 1987). Because of this reproductive age and the higher death rate among young birds infected by H5N1 (Brown et al. 2008), it is important to understand the effect of age-structure on the internal migratory and reproductive dynamics of the flocks. We consider two age groups of birds: the adults A and the juveniles J. We assume an exponential transition for the juveniles with 99 per cent of the juveniles maturing by age 4, leading to a constant maturation rate of $l = 3.15 \times 10^{-3}$ per day. Note that the reproductive maturation, in reality, spans a range of values from 2 to 4 years (table 3). Using a derivation analogous to that presented for the previous model, we arrive at the following system of delay differential equations for the density of birds A and J on each

$$
\begin{align*}
\frac{dA}{dt} &= \lambda - \mu_A A - \mu_{A-H5N1} A - \mu_A - \mu_{J-H5N1} J - \mu_A, \\
\frac{dJ}{dt} &= \mu_A A - \mu_{A-H5N1} A - \mu_A - \mu_{J-H5N1} J - \mu_A - \mu_{J-H5N1} J.
\end{align*}
$$

Table 3. Parameters of the two-age group model of juvenile and adult populations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg laying</td>
<td>5.3 per female with 34% average hatching success (Wurdinger 1973)</td>
</tr>
<tr>
<td>Survival to 1 year</td>
<td>32% of hatched birds survive to one year of age (Wurdinger 1973)</td>
</tr>
<tr>
<td>Maturation age</td>
<td>2–4 years (maturation to highest reproduction rate in primary females; Wurdinger 1973; Lamprecht 1987)</td>
</tr>
<tr>
<td>λ</td>
<td>3.15×10^{-3} d$^{-1}$ (99% mature by age 4)</td>
</tr>
<tr>
<td>μ_A</td>
<td>8.8×10^{-4} d$^{-1}$ on all patches (annual survival rate of 0.725)</td>
</tr>
<tr>
<td>μ_{A-H5N1}</td>
<td>2.5×10^{-3} d$^{-1}$ on all patches (annual survival rate of 0.4)</td>
</tr>
<tr>
<td>μ_{J-H5N1}</td>
<td>3.12×10^{-3} d$^{-1}$ on all patches (annual survival rate of 0.32)</td>
</tr>
<tr>
<td>μ_A</td>
<td>8.8×10^{-1} d$^{-1}$ during flight for all birds (annual survival rate of 0.725)</td>
</tr>
<tr>
<td>Annual return rate to breeding location</td>
<td></td>
</tr>
<tr>
<td>Juvenile return rate</td>
<td>0.56</td>
</tr>
<tr>
<td>Adult return rate</td>
<td>0.83</td>
</tr>
<tr>
<td>Population return rate</td>
<td>0.7</td>
</tr>
<tr>
<td>μ_{J-H5N1}</td>
<td>1.46×10^{-1} d$^{-1}$ (80% death over 11 days)</td>
</tr>
<tr>
<td>μ_{A-H5N1}</td>
<td>4.6×10^{-2} d$^{-1}$ (40% death rate over 11 days)</td>
</tr>
</tbody>
</table>
stopover:

\[A^0 \theta = m_0 (t - \tau_0) \times e^{-(\mu_\gamma A^N (t - \tau_0))} + J^0 (t - \tau_0) \]

\[J^0 = e^{-(\mu_\gamma J_0)} m_0 (t - \tau_0) J^N (t - \tau_0) \]

\[A^1 = m_1 \times e^{-(\mu_\gamma A^0 (t - \tau_1))} + J^0 (t - \tau_1) e^{-(\mu_\gamma J_1)} \]

\[J^1 = e^{-(\mu_\gamma J_0)} m_0 (t - \tau_1) - (m_2 + \mu_{J1}) J^1. \]

\[A^{N/2} = m_{N/2} \times e^{-(\mu_\gamma A^{N/2} (t - \tau_{N/2}))} + J^{N/2 - 1} (t - \tau_{N/2}) e^{-(\mu_\gamma J^{N/2 - 1} (t - \tau_{N/2}))} \]

\[J^{N/2} = e^{-(\mu_\gamma J_{N/2})} m_{N/2} J^{N/2 - 1} (t - \tau_{N/2}) \]

\[A^N = m_N \times e^{-(\mu_\gamma A^{N-1} (t - \tau_N))} + J^{N-1} \]

\[(t - \tau_N) e^{-(\mu_\gamma J^{N-1} (t - \tau_N))} \]

\[(m_0 t + \mu_{A,N}) A^N \]

and

\[J^N = e^{-(\mu_\gamma J_{N-1})} m_N J^{N-1} (t - \tau_N) \]

\[(m_0 t + \mu_{J,N} + \lambda) J^N. \]

(3.1)

where the birth rate in the breeding patch is determined by the adult population and causes an increase in the juvenile population. We assume the death rates for the adults and juveniles to be equal on the flyways, but different on the stopovers

\[B^* (J^{N/2}, A^{N/2}) = \gamma A^{N/2} \left(1 - \frac{J^{N/2} + A^{N/2}}{K} \right). \]

(3.2)

The growth of the population only contributes to the increase in the population \(J \) on the breeding ground \(P_{N/2} \), where the limiting density capacity is determined by both the adults and juveniles. On land, the survival rate of juveniles is taken to be 32 per cent in the spring and winter and 40 per cent in the autumn, while that of the adults is 72.5 per cent. Note that here we assume the same time scale for the reproductive and immune system maturation. How the difference between immune system maturation and reproduction maturation affects the disease dynamics and spatial spread of bird populations remains to be an interesting subject for future study.

The variations of death rates are due to the differences of body mass and immune resistance between juveniles and adults, which can be exacerbated by the seasonal changes of food distribution and temperature (Schekkerman & Slaterus 2007). The parameters selected give a return rate to the breeding patch after 1 year of 56 per cent for the juveniles and 83 per cent for adults. Starting with the above parameters and an initial population of 15 000 adults and 15 000 juveniles, we obtain an equilibrium population that varies between a high of 44100 at the end of the summer (35 500 adults and 8600 juveniles) to a low of 36 000 at the end of the winter (33 000 adults and 3000 juveniles; see the electronic supplementary material). Next, the high H5N1 disease death rate is introduced at various locations similar to the previous model. Recall that Zhou et al. (2006) found an 80 per cent death rate for three-week-old geese, while the experiment of Brown et al. (2008) found a death rate of 40 per cent, although their sample was limited. Note that the geese used in the experiment of Brown et al. (2008) were older at 12 weeks old. We do not have death rates from the literature specifically for the adult bar-headed geese infected by H5N1; however, we rely on these studies to set a death rate of 80 per cent for the juveniles and 40 per cent for the adults in the simulations presented herein.

Figure 7 shows the impact of the H5N1 death toll on the bird population depending on the location of the disease. The population at equilibrium is shown in figure 7a and its transition to the equilibrium is shown in figure 7b. These results were obtained starting from an equilibrium population of 33 000 adults and 3000 juveniles. We recover that the effect on the population equilibrium is more severe when the H5N1 death toll is introduced during the autumn migration (patches 7–11) compared with when it is introduced in the spring migration (patches 1–5). This begins to be true only after a few years of adjustment as shown in figure 7b. At equilibrium, the difference in the size of the populations subjected to repeated spring outbreaks (denoted S) and those subjected to repeated autumn outbreaks (denoted F) appears in both adult and juvenile sub-populations. Figure 7 shows that the difference between the number of juveniles in populations S and F is significant in the winter, while being of similar size in the summer. This is true after only 1 year. The adult population shows a similar difference in size between populations S and F early on, but eventually reaches the equilibrium, where the difference in the number of adults between populations S and F is apparent all year long. The smaller number of juveniles in the winter for population F influences the number of adults in the spring and summer. In sum, the two-age model shows that repeated outbreaks in the autumn lead to a reduced number of juveniles arriving at the wintering ground. During the winter, there are larger losses of juveniles, which in turn affects the equilibrium size of the adult population in the spring. Fewer adults arrive at the breeding ground, resulting in a smaller total population repeatedly affected by H5N1 in the autumn.

4. DISCUSSION

We found that repeated deadly epizootics of H5N1 at stopovers during the autumn migration cause more losses to the affected population over time than repeated epizootics during the spring migration. This is observed when the populations of birds reach their new equilibrium size in response to the repeated
outbreaks. In addition, this is observed in both the one-age-group and two-age-group models. However, during the early years of adjustment to the outbreaks, the opposite is true. In other words, during the first few years, the population of the group repeatedly affected by H5N1 in the spring is smaller than that repeatedly affected in the autumn. This finding is counter-intuitive, especially when considering that we accounted for the higher reported natural death rate of birds during the spring migration compared with that during the autumn migration. The reversal of dynamics during the transition to equilibrium was not expected and shows that the intuitive assessment of the impact of repeated autumn outbreaks discussed in the literature is valid, but only for the early years.

In order to investigate further the effect of repeated outbreaks on bird species and examine the possible role of the birds in the local or non-local spread of H5N1, improvements to the present modelling efforts need to be made. These include a more complex modelling of the disease outbreak dynamics and the inclusion of the role of the aquatic environment in keeping some stopovers contaminated (Brown et al. 2009). In fact, we did not incorporate the effect of environmental transmission of the avian influenza viruses on the stopovers which could prove important in the maintenance of the outbreaks from one year to the next as was highlighted recently (e.g. Hedenström 2008; Carey 2009).

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Shared Hierarchical Academic Research Network, the Mathematics of Information Technology and Complex Systems, the Geomatics for Informed Decisions, the Public Health Agency of Canada and the National Research Council of Canada. The authors are grateful to the three anonymous referees for their constructive comments.

REFERENCES

