Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature

C.-Y. Huang, R. S. Trask and I. P. Bond*

Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, Queen’s Buildings, University Walk, Bristol BS8 1TR, UK

A study of the influence of embedded circular hollow vasculuses on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vasculuses will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vasculuses leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascul geometry in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vasculuses, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vasculuses ranges from 13 to 70 per cent, which correlates with vasculose dimension.

Keywords: self-healing; biomimetic; vascular network; compression strength; high-speed photography

1. INTRODUCTION

Fibre-reinforced polymer (FRP) composites are gradually taking the place of metal alloys for significant parts of the primary structure in modern aircraft and their performance is key in determining reliability, performance, gross weight and cost-effectiveness of the vehicle (Ye et al. 2005). In such high-end applications, relatively minor damage within a composite material may result in a significant reduction in overall performance. Such damage may be difficult to detect visually and result in costly repair and maintenance work. The idea of self-healing may provide an alternative approach to addressing the damages caused by compression, modest impact, etc. The underlying concept of self-healing is analogous to the healing process in living organisms, i.e. to repair the internal damage by using the materials already contained within the structure (Trask et al. 2007a). Researchers in various fields (White et al. 2001; Kessler et al. 2003; Pang & Bond 2005; Toohey et al. 2007; Bond et al. 2008; Trask & Bond in press) have successfully developed discrete bioinspired methods to provide autonomous repair functionality to targeted material systems, e.g. bulk polymers, FRP composites, etc. through liquid-encapsulated self-healing systems. However, such approaches are constrained by the limited supply of healing agent stored within the structure and hence failure to heal repeated or multiple damage events occurring at the same location. This is supported by Williams and co-workers (2009), in which the authors have demonstrated that, in a brittle thermostet matrix, crack propagation after healing occurs within the vicinity of the original damage site.

To address this problem, a concept for a next generation of self-healing composite materials is proposed which takes a biomimetic step forward and implements a pervasive vascular network system that has the potential to deliver healing agent from a central reservoir to all locations in the structure, as well as providing repeated healing for ongoing damage events (Trask et al. 2007a; Bond et al. 2008). Successful preliminary studies on such a biomimetic self-healing concept have been accomplished (Toohey et al. 2007, 2009; Williams et al. 2007) by embedding miniature interconnected vascular networks in either bulk polymeric materials or core materials of composite sandwich structures. The inclusion of the healing vascular networks has been shown not to disrupt the internal structure and performance of these materials as they can easily be made to conform and incorporate the embedded entities. However, this is not the case for advanced FRP composite laminates. The presence of such inclusions will disturb the composite laminate architecture, e.g. in-plane and out-of-plane fibre alignment, and can have a significant effect upon overall structural performance.

*Author for correspondence (i.p.bond@bristol.ac.uk).
An ongoing project at the University of Bristol aims to investigate the conceptual form of vascular network designs which bestow a self-healing capability on a FRP composite laminate, as well as evaluating the implications on composite mechanical performance of including such networks. In order for a self-healing composite laminate to be considered for application in aerospace and other high-performance fields, it must be shown that such inclusions do not result in significant degradation in mechanical performance of the host material (i.e. strength, modulus, etc.). Behaviour under compressive loading is studied as this reflects a critical load regime for self-healing of the polymer matrix.

The conceptual design of engineered vascular networks can be divided into two length scales: the vascular cross-sectional shape (micro-scale) and the planform vascular pattern (meso-scale), respectively. The former refers to the individual vascular cross-sectional geometry, while the latter refers to the whole vascular morphology, ranging from two-dimensional planar networks, as presented in the studies of Bejan and co-workers (2006), Emerson et al. (2006), Janakiraman et al. (2007), Trask et al. (2007b) and Williams et al. (2007), to three-dimensional interconnected configurations, as reported in Toohey and co-workers (2007), Williams et al. (2008), Kim et al. (2009) and Toohey et al. (2009). This paper considers only the former. The reader is referred to Bejan & Lorente (2008) for more detailed reviews of vascular morphological design.

It is difficult to envisage forming an interconnected vascular network within a FRP laminate without having certain sections of the network being oriented off-axis to the local fibre direction(s) of adjacent plies. Thus, when a lobe with a dimension much greater than a typical reinforcing fibre is embedded off-axis to the local fibre orientation, the result is a geometric distortion of the surrounding fibres and creation of resin-rich pockets, as shown in figure 1. Such resin pockets are regarded as potential defects within the structural laminate (Silva et al. 2005). This study focuses on the case where the lobe is oriented orthogonal to the local fibre direction as this is regarded as having the most detrimental consequences for the structural integrity of the host laminate.

The fundamental form of a lobe cross-section is a simple circle (figure 1). Advancing from the circular form, several different vascular patterns can be considered for their feasibility as part of a self-healing system, including single and multiple vascular forms, respectively. Novel multiple vascular forms include adjacent circular vascular and bioinspired ‘ray cell’ features. The purpose of designing multiple vascular forms is to host multi-component healing agents currently under consideration for self-healing composite materials (Williams et al. 2009). As a first step in this research direction, this paper considers only an investigation of unidirectional (UD) single circular vascular. Studies on multiple vascular forms will be presented in a subsequent paper.

In this study, both the size and shape of a single lobe (diameter range 150–400 μm) can be compared with a typical fibre-optic sensor (FOS; typical diameter 100–300 μm). Therefore, previous studies on the consequences of embedding FOS into FRP composite laminates (e.g. Case & Carman 1994; Friebele et al. 1999; Zhou et al. 2004; Silva et al. 2005; Shivakumar & Bhargava 2005; Fernando & Degamber 2006; Kousourakis et al. 2008) are regarded as good comparators. Jensen and colleagues (1992a,b) are among the pioneers to study the influence upon host composite performance following embedment of FOS with regard to orientation and numbers of FOS. Subsequent researchers concluded that the degradation of material strength and modulus is significantly affected by the optical fibre diameter, the FOS orientation relative to nearest plies and the FOS materials (Friebele et al. 1999; Zhou et al. 2004; Fernando & Degamber 2006). Apart from modifying the diameter and constituent materials of FOS in order to reduce their influence on resulting performance, it is the resin-rich pocket caused by off-axis FOS emplacement that draws the attention of most researchers. The presence of resin pockets results in a high internal stress concentration that is detrimental to the overall structure. Their geometry is mainly determined by FOS diameter, orientation, laminate stacking sequence, laminate stiffness and lamination pressure (Case & Carman 1994). Experimental and analytical studies have reported that the presence of resin pockets has a significant effect on the host material’s performance under static, fatigue and impact loading. The scale of reduction under compressive loading ranges from 15 to 60 per cent of original strength, while for bending and tension the influence is negligible (Shivakumar & Emmanwori 2004; Silva et al. 2005). The reduction under fatigue loading is between 20 and 35 per cent (Benchekchou & Ferguson 1998; Silva et al. 2005). Such findings are further supported by research on inclusion of other features (e.g. hollow galleries; Kousourakis et al. 2008). In all these studies, whether the inclusions are FOS or hollow galleries, a circular cross-section is assumed.

One of the major differences between a hollow lobe and an FOS is that the former has no load-carrying capability. A hollow lobe may thus act as a significant defect within the structure. Very little literature is available which reports the studies of such hollow inclusions.

This paper presents a study of the influence of circular hollow vascular upon the mechanical performance of the host material. Manufacturing methods for the creation of one-dimensional circular hollow vascular within a conventional carbon fibre-reinforced polymer (CFRP) composite laminate system (Hexcel IM7/8552) are proposed. Optical microscopy was used to precisely characterize the laminate cross-sectional geometries, especially within the lenticular resin pocket region. Such detailed quantification tasks are an essential preliminary activity. These quantification results are used for subsequent construction of finite element (FE) models (using ABAQUS 6.7-1). The FE modelling results of stress–strain analysis in this region while the laminate is under static compressive load are presented, and likely failure mechanisms are proposed based on the FE results. Finally, in-plane compressive tests were conducted to validate the failure mechanisms deduced
from finite element analysis (FEA). In particular, an understanding of the role played by the resin pockets in crack initiation at or near the vasculature was required. The compressive testing was recorded by high-speed photography (HSP) in order to precisely capture the failure mechanism. A comprehensive comparison between FEA prediction and experimental results is provided.

2. MATERIAL AND METHODS

2.1. Specimen manufacture

Specimens of UD carbon fibre/epoxy composite laminates were prepared containing vasculature of various dimensions along the laminate mid-plane, oriented perpendicular to the fibre direction. The laminates were made using 24 plies (3 mm thickness) or 32 plies (4 mm thickness) of UD IM7/8552 prepreg tape (HexPly 8552, Hexcel Ltd, UK) with dimensions of 600 x 150 mm. The vasculature-forming precursors used in this study were stainless steel wires that are commercially available in various diameters. The stainless steel wires have high rigidity and high melting temperature. This is in direct contrast to Trask & Bond (in press), in which low melting temperature channel-forming materials (i.e. solder wires) were used, resulting in a slightly elliptical channel cross-section (see Trask & Bond in press). The stainless steel wires maintain reasonably identical cross-sectional shape after the autoclave cycle. Dimensional details of all specimens studied are given in table 1. A 32-ply stack was chosen to host the largest circular vasculature in order to ensure that the laminate surface remained flat after curing, i.e. ply disturbance in through-thickness direction caused by the presence of large inclusions is mitigated by a greater ply stack.

In order to assist their later removal from cured laminates, a thin polytetrafluoroethylene (PTFE) film was manually coated onto the surface of the stainless steel wires. This was undertaken by mounting the wires horizontally in air, rotating at a constant rate, and manually applying a PTFE spray (ROCOL PTFE spray, part no. 72021) from a distance of approximately 20–30 cm (recommended by the manufacturer) for two complete revolutions. After the coating, the wires were introduced at the mid-layer of the prepreg stack, along the centreline of the specimen. The wires were aligned perpendicular to the fibre orientation and extended over the entire width of the specimen. A small amount of tension was applied to the wires by adhering both ends to the tool plate surface to ensure their straightness. The prepreg stack was then covered in non-porous peel-ply, and a steel caul plate overlaid to ensure surface flatness and smoothness before being sealed in a vacuum bag and cured in an autoclave following the manufacturer’s (Hexcel Ltd, UK) specified cycle (6 h at 180°C at 700 kPa). After the laminates were cured, the steel wires were removed manually, leaving hollow-channel voids.

![Figure 1](image_url). Cross-sectional optical micrographs of circular vasculature (diameters of (a) 80 μm, (b) 200 μm, (c) 310 μm and (d) 400 μm) forming a resin-rich pocket in a CFRP laminate. Scale bars, 500 μm.

| Table 1. Detailed dimensions of vascular specimens. |
|-----------------|-------------------|
| vasculature diameter (μm) | laminate ply (thickness) |
| 80, 150, 200, 310, 400 and 560 | 24 plies (3 mm) |
| 710 | 32 plies (4 mm) |

C.-Y. Huang et al. 3
vascules. Unwanted laminate edges were trimmed, and test specimens were cut to two different sizes: 30 × 30 mm, and 90 mm (fibre direction) × 10 mm (width). The former were mounted in Prime 20LV epoxy resin (Gurit (UK) Ltd), polished and optically examined to characterize laminate microstructures. The latter were stored for subsequent mechanical testing in compression.

2.2. Microscopic characterization of resin pocket geometrical parameters

Mounted composite specimens were examined using optical microscopy (Olympus GX41 microscope with Pixera Pro 150ES camera and Olympus SZX16 microscope with ColorView camera). For each vascular dimension, four to five specimens were prepared and micrographed and average measurements of these specimens were obtained.

The two-dimensional conceptual models of a single circular vascule are illustrated in figure 2, which are idealized from real micrographs (e.g. figure 1). As indicated in figure 2a, the following five parameters for the resin pocket region of each vascule type were quantified from the cross-sectional micrographs using image analysis software (ImageJ v. 1.41).

— Resin pocket length (L_{RP}). Defined as the planar distance from the vascule centre to the end of the resin-rich pocket. Two values of L_{RP} were obtained from each micrograph and averaged.

— Fibre disturbance angle (θ_d). Defined as the angle subtended by the resin pocket with the plane of the local fibre ply.

— Fibre disturbance height (h_d). Defined as the separation distance from the axis of the resin pocket (and also the vascule) to the first layer of reinforcing fibres that are observed to be undisturbed by the presence of the inclusion. Note that these are visual observations and the results are approximate measures.

— Resin pocket area (A). The cross-sectional area of the resin pocket, including the vascule(s). An average value was obtained for each vascule.

2.3. Finite element modelling methodology

Since model geometry and applied in-plane load are symmetric, only one-quarter of the conceptual model (figure 2a) is considered, with the centre point of the central vascule being taken as the origin, as shown in figure 2b. The length (or UD fibre direction), the thickness and the width of laminate are taken as x, y- and z-axes of the model in figure 2b, respectively. The idealized model is divided into three zones and the material properties in different zones are varied. The area of interest, i.e. zones (2) and (3), is enlarged. Since the laminate length of manufactured specimens (90 mm) is much larger than the vascule diameter, the default length of all models has been set as 50r; which is long enough to avoid any unnecessary boundary effects. To simulate the worst scenario vascule orientation, i.e. vascules aligned at 90° to local fibre direction, vascule orientation of all models is parallel to the z-axis, or out of the paper direction. The curved lines in zone (2) represent the profile of disturbed reinforcing fibres because of embedded vascules, which are geometrically distributed as per the micrographs. The fibre orientations in zone (2) are varied to follow the shape of the resin pocket before reverting to being parallel with the x-axis. Zone (1) is undisturbed composite laminate and zone (3) is the resin-rich pocket. The material properties (including elastic, thermal and failure properties) of IM7/8552 composite laminate and Hexcel 8552 neat epoxy resin system applied to different zones in the FE modelling tasks are detailed in appendix A.

The specimen width is very large when compared with its thickness, hence the model is assumed to be in a plain strain state. The FE models are mapped with 8-node plain strain quadrilateral elements (CPE8) by applying an isoparametric mapping concept using a commercial FE code ABAQUS 6.7-1. Extra care was taken when meshing the regions of interest such as vascule boundaries and resin pocket run-outs. Linear elastic analysis is performed and symmetric boundary conditions are applied to both x- and y-axes. Default loading of 1.650 GPa (σ_0) is applied to the model edge ($z = 50r$) equal to a 1 per cent strain for a UD IM7/8552 composite laminate. For each principal
direction (longitudinal and through-thickness), complete stress and strain contours are obtained.

According to the standard curing cycle suggested by the manufacturer, the laminates are cured at 180°C and then cooled down to ambient temperature (20°C). The first 30°C of cooling has little influence on the curing stresses since the material’s viscoelastic relaxation is still at a high level (Garstka et al. 2007). Therefore, the temperature decrease from 150°C to ambient is taken into account as a thermal effect when obtaining the curing stresses in the FEA. The modelling thus contains two consecutive steps. The curing stresses because of temperature decrease are obtained in the first step. Mechanical loading is then applied to the model in step 2 to calculate the mechanical response. Currently, the self-healing functionality proposed to exploit these vascular inclusions is targeted at recovery of compressive strength following impact damage. Therefore, a compressive loading, which results mainly in matrix-dominated failure, has been chosen as the primary mechanical loading applied in the FE models.

In order to ensure the convergence of the modelling results, three different meshing densities were generated and their results evaluated. The numbers of elements/nodes of each mesh are: (A) 1277/7548; (B) 3975/12240; and (C) 4796/18510, respectively. It was found that the best convergence was obtained with mesh density (B), while mesh density (C) provided similar results but with unnecessary excess computation. Mesh density (B), therefore, is used for all FE modelling tasks in this study.

2.4 Mechanical testing with high-speed photography

The compression testing was conducted in a 100 kN Instron mechanical test machine under displacement control at 1 mm min⁻¹, following the test method developed by Haberle & Matthews (1994). The test arrangement and the compression rig design are illustrated in detail in Haberle & Matthews (1994). The specimen planar dimension is 90 mm (length, UD fibre direction) by 10 mm (width). Laminates of 24 plies (nominal thickness 3 mm) were used to host hollow vasculuses with size 80–560 μm; while 32-ply laminates (nominal thickness, 4 mm) were used for the 710 μm vasculuses. In order to fully appreciate the failure mechanisms, only one vasculus is embedded within each test specimen. In addition, plain 24-ply composite laminates (i.e. no embedded vasculus) were tested to serve as a baseline for compression strength. All laminate samples were cut from large composite panels that were manufactured following standard processes suggested by the material manufacturer. The laminates were cut to desired size using a water-cooled diamond saw and roughened at both ends by using a sand blaster. Glass fibre-reinforced epoxy end tabs (Heathcote Industrial Plastics) were attached to the laminates with Araldite 2015 epoxy resin adhesive, in accordance with the test method (Haberle & Matthews 1994). For each vasculus type, 5–12 replicates were tested and the load–displacement results were recorded by the test machine control software and averaged afterwards.

In order to capture the instant of crack initiation, a Photron Fastcam SA1 high-speed digital video camera (8 Gb memory) was employed to monitor the complete testing cycle. The recording frame rate was 150 000 frames per second (fps), which provides a maximum record time of 2.24 s. Under normal conditions such elapse time and frame rate are enough to capture the whole process from crack initiation to final failure. Manual triggering was used for the test because of the absence of automatic triggering between the high-speed camera and test machine.

3. RESULTS AND DISCUSSIONS

3.1 Microscopic characterization of resin pocket geometrical parameters

Micrographs of different diameter circular vasculuses, enclosed by lenticular resin-rich pockets, are presented in figure 1. In some micrographs, voids can be found either within the resin pocket or between adjacent plies of reinforcing fibres. It can be easily observed from the micrographs that both the fibre disturbance angle and resin pocket area are proportional to vasculus diameter, in accordance with Dasgupta et al. (1992).

The measured geometric parameters for all circular vasculuses are listed in table 2. Note that for ease of subsequent FE modelling tasks, two major parameters, resin pocket length (L_{RP}) and fibre disturbance height (h_d), are specifically normalized by the radius of the vasculus, r. Most of the vasculuses (more than 95%) measured from the micrographs have the same cross-sectional dimensions as the original vasculus-forming steel wires, eliminating concerns about mismatch between coefficients of thermal expansion during cure. A positive correlation between vasculus diameter and each geometric parameter can be observed in table 2.
These trend lines suggest that embedding larger vas-
cules results in larger resin-rich pockets as well as
more disturbed/curved reinforcing fibres. This is likely
to have a greater implication for structural integrity.
These observations show good agreement with the
reported results for FOS (Shivakumar & Emmanwori
2004) and hollow vasculbes formed by solder wires
(Trask & Bond in press). Such agreement suggests
that the observations presented in this paper are gener-
ally applicable to other CFRP laminate systems.

Of all the parameters listed in table 2, the resin
pocket length \(L_{RP} \) is predicted to have the most
direct influence on structural integrity of the laminate.
There is a dichotomy in which larger vasculbes will
carry a greater volume of healing agent thus offering a
potentially greater self-healing capability, whereas
larger \(L_{RP} \) arising from larger vasculbes would require
greater crack propagation through a resin pocket to
interact with a vasculbe and trigger the healing pro-
cess. It can be observed from table 2 that when embedded
vasculbes are larger than 200 \(\mu m \), the resin pocket
lengths \(L_{RP} \) remain in the range of four to six times
the vasculbe radius. Such a consistent trend may provide
a useful guideline for material engineers to deduce an
optimized point between self-healing capacity and
self-healing efficiency.

The fibre disturbance angle has little direct influence
upon any healing capacity utilizing embedded vasculbes;
however, it will greatly affect the overall mechanical per-
formance of the material as it may increase the
structure’s vulnerability towards micro-buckling while
under compressive loading. Since both the default loading
directions in the corresponding analytical and
mechanical studies are parallel to the fibre direction (or
\(z \)-axis), the fibre disturbance angle in this case can be
regarded as fibre misalignment angle with respect to
loading. In the past decade, numerous studies
(Wisnom & Atkinson 2000; Yokozeki et al. 2005;
Vinet & Gamby 2008) have been undertaken to analyse
the effects of fibre waviness, fibre misalignment and fibre
 micro-buckling on the mechanical performance of either
UD or woven composite materials, especially under com-
pressive loading. Various analytical and empirical
models have been proposed, and the agreed consensus
is that fibre misalignment angle has a dramatic effect
on material performance. The influence of misalignment
angle can be nonlinear, with even a small misalignment
angle leading to a significant reduction in compressive
strength of the material (Wisnom & Atkinson 2000).
The distribution and randomness of such wavy fibres
also have obvious influence.

The pressure applied during autoclave cure generally
removes any perturbations in the ply stacks, resulting in
smooth and flat composite panels. The fact that no
thickness changes are visible indicates that embedding
such big inclusions into composite laminates results in
not only disturbance of local fibre orientation, but
local increases in fibre volume fraction in the through-
thickness direction (Trask & Bond in press). This
inevitably affects the local stress–strain distributions and
the overall structural performance (Pilkey 2008).

To this end, the ‘fibre disturbance height’ \(h_d \) is a
good indication of the local fibre volume fraction
changes and is regarded as one of the essential parameters
for analysing structural performance. Positive correlation
between \(h_d \) and vascular dimension in table 2 suggests
that larger vasculbes may result in greater regions of
increased fibre volume fraction above and below the vas-
cule. This can also be regarded as a disadvantage of embedding larger vasculbes into FRP laminates.

The resin pocket area is directly related to the dimen-
sions of the embedded vasculbe. During cure, the resin is
transferred from the laminate prepreg stack into the
space created by an embedded vasculbe to form the
resin pocket. Therefore, according to the principle of
mass conservation, the presence of a resin pocket
means that some other regions of the composite lami-
nate must contain a lower volume of matrix material
than the initial value. However, the presence of the
steel wire vasculbe preforms causes an uneven local
pressure distribution during consolidation resulting in
small voids in the host laminate adjacent to the resin-
rich pockets. A larger vasculbe gives rise to larger voids
within the adjacent composite laminate, effectively
becoming significant structural defects (figure 1). This
observation corresponds with the findings of Trask &
Bond (in press). Under loading, such voids are likely
to initiate crack formation or attract a nearby propagat-
ing crack away from interacting with a vasculbe, a key
requirement if used for a self-healing function.

3.2. Finite element analysis

To match the compression testing results presented in later sections, the FEA results of laminates with a
400 \(\mu m \) circular vasculbe are presented here as the represen-
tative of all configurations studied. The resin pocket
length \(L_{RP} = 5.08r \), and the fibre disturbance height
\(h_d = 3.71r \). Since the FE models are predefined as in
plain strain, only two principal strains \((\varepsilon_1 \text{ and } \varepsilon_2) \) are
generated, as no out-of-plane strain occurs. The stress
contours in the longitudinal (i.e. fibre direction, \(\sigma_1 \))
and transverse (i.e. through the thickness, \(\sigma_2 \))
directions are shown in figure 3a,b, respectively. The
longitudinal \((\varepsilon_1) \) and transverse \((\varepsilon_2) \) strain contours
are shown in figure 3c,d, respectively. Here only the
regions of interest, i.e. resin pocket and curved
laminates (zones (2) and (3) in figure 2), of each
stress–strain contour are presented in order to provide
a more illustrative comparison. The stress concentra-
tion factors (SCFs) for various locations of all vascular sizes
are listed in table 3.

It can be observed in figure 3 that under axial com-
pressive load, the longitudinal stress concentration
occurs at the boundary of the resin pocket (point D),
near the top end of circular vasculbe (point B). The aver-
age applied axial compressive load at the model edge is
1.65 GPa, which is denoted as \(\sigma_0 \). The longitudinal SCF
at point D, or \(K_{1(D)} \), is calculated as \(\sigma_1/\sigma_0 = 2.79 \)
(figure 3a). Note that, here the notations 1 and 2
refer to longitudinal and through-thickness directions,
respectively; while the notations A, B, C and D refer
to specific points as denoted in figure 3. In the
through-thickness direction, it can be seen that the
highest tensile stress in the transverse direction occurs
at the vascular boundary, point C (or position at
The location of maximum strain concentration is very close to point B, which is at the boundary of the resin pocket and normal laminate ply. This is not far from the location of maximum stress concentration. In the transverse direction (figure 3d), the maximum tensile strain occurs again at point C, which corresponds well with the stress contours.

Note that with regard to stress–strain contours, all vasculatures have shown similar trends regardless of vasculature dimensions. Hence, only the contours of 400 μm vasculature are presented.

Since the stress distributions are of primary interest in the current study, only the stress results will be presented in the following sections. It can be concluded from the stress–strain contours that critical stresses (maximum or minimum) occur at the x-axis or at the resin pocket boundary (the curved line ‘BDA’ as shown in figure 3a). As a result, stress variations along these paths are further examined for detailed understanding. The plots in figure 4 are replotted data exported from ABAQUS and post-processed in MS Office Excel 2007. To simplify the variation, the x-axes refer to stress components divided by \(\sigma_0 \) along the model x-axis. There is very low longitudinal stress (\(\sigma_x \)) in the resin pocket region, which increases significantly moving into the composite region, because of the substantial change in material stiffness. Similar trends were also found by Shivakumar & Bhargava (2005). Moving towards the end of model (\(x = L \)), \(\sigma_x \) converges to \(\sigma_0 \) and finally the SCF reaches unity.

The variation of \(\sigma_x \) along the model x-axis is shown in figure 4b. Figure 4b shows the variation of normalized \(\sigma_x \) along the model x-axis. There is very low longitudinal stress (\(\sigma_x \)) in the resin pocket region, which increases significantly moving into the composite region, because of the substantial change in material stiffness. Similar trends were also found by Shivakumar & Bhargava (2005). Moving towards the end of model (\(x = L \)), \(\sigma_x \) converges to \(\sigma_0 \) and finally the SCF reaches unity.

The variation of \(\sigma_y \) along the model x-axis is shown in figure 4c. The stress within the vasculature region remains zero because of the absence of any load-bearing.
material. Two obvious peaks are observed at points C and A, respectively. These two peaks denote maximum stress concentrations in opposing directions. Under compressive load, a maximum negative peak of reactive stress at point C refers to the highest transverse tensile stress. The distinct stress variation also indicates that the section close to point A experiences compressive stress, while the section close to point C is under tensile loading. These results contrast with the findings of Shivakumar & Bhargava (2005) because of the different embedded material properties.

The variation of \(\sigma_x \) along the path ‘BDA’ is presented in figure 4c. The negative maximum point located close to point D is the maximum stress concentration in the longitudinal direction; while the positive maximum occurs at point A. Similar to figure 4c, distinct positive/negative regions can be observed from the plot, with a transition point at about 80 per cent of the distance from point B. Such a transition point varies from 65 to 85 per cent according to vascule size, but plots show a similar trend. A similar deduction can be made from this plot in that under compressive load the area nearest the resin pocket run-out will experience compressive stress, while the area near the vascule will experience tensile stress.

3.3. Deduced failure mechanisms based on FEA results

From the FEA results, failure mechanisms of laminates with embedded hollow vascules under compressive loads can be deduced. Specific failure mechanisms, as shown in figure 5, are as follows.

Under axial compressive loading, a transverse tensile stress is concentrated at point C, while compressive stress peaks at point A (figure 5b). The transverse tensile stresses around the hollow vascule (points B and C) may result in two failure modes. When the laminate mode I fracture toughness \((G_{IC}) \) is greater than the fracture toughness of the resin pocket or neat resin \((G_{IC(resin)}) \), the failure will be initiated at point C in the form of cracking, leading to steps (c) and (d). Otherwise, if \(G_{IC(resin)} > G_{IC} \), delamination occurs at the resin pocket boundaries, leading to steps (e) and (f). It is dependent on the specific composite system under investigation as to which failure mode is more likely to happen.

In the first case (figure 5c,d), the high transverse tensile stress at C may initiate cracking at the vascule boundary when (Shivakumar & Bhargava 2005)

\[
\sigma_0 \geq \frac{S_{22T}}{K_{2C}},
\]

where \(S_{22T} \) is transverse tensile strength and \(K_{2C} \) is transverse SCF at point C.

The concentrated tensile stress at C is released when the vascule is ruptured. Once the cracks are formed, they propagate toward the ends of the resin pocket owing to the transverse tensile stress at the new crack front, C’. This is potentially beneficial for a self-healing delivery system based on vascular networks since the healing agents stored within a vascule have the...
potential to heal the crack and terminate/delay the structural failure process. Upon continued compression, the propagation of the crack opens the resin pocket and further increases the fibre misalignment of the surrounding laminate plies. The local compression strength is thus reduced since it is a function of the fibre misalignment angle (Budiansky & Fleck 1993). Finally, the composite fails because of fibre micro-buckling around the vascule region (point B), as shown in figure 5d. This happens when the longitudinal compressive strength of the material is reached (Shivakumar & Bhargava 2005), or

\[\sigma_0 \geq \frac{S_{11c}}{K_{1(B)}} \]

(3.2)

where \(S_{11c} \) is transverse tensile strength and \(K_{1(B)} \) is the longitudinal SCF at point B.

According to these criteria and the SCF results obtained from FEA, the predicted stress at crack initiation and final failure for each vascular dimension are calculated and will be compared with the experimental results in a later section.

When \(G_{lc} > G_{c(resin)} \) (figure 5e,f), splitting between resin pocket and surrounding laminates occurs. This is likely to initiate at point B and then propagate towards the resin pocket run-out, as shown in Shivakumar & Bhargava (2005). The fibre misalignment is thus enlarged, resulting in a reduction in the material’s compressive strength. Again, upon continued loading, the crack propagates along the edge of the resin pocket and into the adjacent ply interface. Finally, the structure fails because of micro-buckling of fibres around the vascules.

Such failure mechanisms differ from that observed in FOS laminates as, in that case, the resin pocket surrounds a solid fibre instead of a hollow vascule. As a result, the transverse tensile stress is concentrated at point B, instead of point C, and will initiate the interfacial failure around point B (Shivakumar & Emmanwori 2004). Eventually, the material fails because of fibre buckling; this result concurs with the prediction in this study.

3.4. Compression test results

The aim of the mechanical testing is to validate the fidelity of the FEA results and consequent failure mechanisms. For the compression testing, vascules of 80, 150, 200, 310, 400 and 560 \(\mu \)m, respectively, were tested. In addition, five baseline specimens (i.e. no embedded vascule) were also tested to measure the compressive strength of the baseline laminate. Limited by optical resolution, the HSP was unable to catch detailed crack propagation for smaller vascules, including 80 and 150 \(\mu \)m, respectively. For each vascule size tested, 5–12 specimens were tested while being recorded by HSP. The HSP recording time varies from 1.8 to 2.24 s with maximum frame rate of 150 000 fps. Because of a complicated and delicate manufacturing technique, it was found much more difficult to produce specimens with 80 \(\mu \)m vascules compared with the larger diameters. During the mechanical removal process from cured laminates, some 80 \(\mu \)m stainless steel wires were...
fractured. This left part of the wire preform within the laminate panel, and thus blocked the vasculature. Following specimen preparation, the specimens containing blocked (or partially blocked) vasculatures were excluded from the subsequent test programme.

Figure 6 shows the photos taken by HSP during the compression test of a 400 μm embedded vasculature. The first image (top left) denotes the specimens’ orientation and the resin pocket location. The last image (bottom right) shows final failure with ‘a’ denoting location of circular vasculature and ‘b’ denoting through-thickness V-shaped fracture.

Table 4. Comparison of FEA predictions and experimental results (with coefficient of variation in parentheses), including the relative compressive strengths of each vasculature size.

<table>
<thead>
<tr>
<th>Vasculature diameter (μm)</th>
<th>Crack initiation (GPa)</th>
<th>Final failure (GPa)</th>
<th>Relative strength</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prediction</td>
<td>experiment</td>
<td>prediction</td>
<td>experiment</td>
</tr>
<tr>
<td>Baselines</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.298</td>
</tr>
<tr>
<td>80</td>
<td>0.714</td>
<td>n.a.</td>
<td>1.270</td>
<td>1.120</td>
</tr>
<tr>
<td>150</td>
<td>0.603</td>
<td>n.a.</td>
<td>1.171</td>
<td>0.807</td>
</tr>
<tr>
<td>200</td>
<td>0.451</td>
<td>0.492</td>
<td>0.789</td>
<td>0.733</td>
</tr>
<tr>
<td>300</td>
<td>0.414</td>
<td>0.431 (9.2%)</td>
<td>0.651</td>
<td>0.610</td>
</tr>
<tr>
<td>400</td>
<td>0.387</td>
<td>0.419 (10.2%)</td>
<td>0.536</td>
<td>0.503</td>
</tr>
<tr>
<td>560</td>
<td>0.339</td>
<td>0.321 (6.5%)</td>
<td>0.441</td>
<td>0.393</td>
</tr>
</tbody>
</table>

J. R. Soc. Interface
generally larger than final failure stress. The experimental results for each vascule dimension are compared with predictions based on FEA in table 4.

3.5. Comparison of FEA predictions and experimental results

Table 4 lists the full comparison of FEA predictions and mechanical test results for stress at crack initiation and final failure, respectively. The FEA predictions are obtained from equations (3.1) and (3.2) for crack initiation stress and final failure stress, respectively. The measured compressive strength of baseline laminates (i.e. no vascule) is 1.298 GPa, which is lower than that reported in the literature (Jumbo et al. 2007, 1.5 GPa (S_{11c} in appendix A). Different testing and manufacturing methods may account for the apparent difference in strength. In addition, the relative compressive strengths of each vascule diameter from the baseline value, i.e. 1.298 GPa, are included.

For both the FEA and experimental data in table 4, an apparent decrease can be observed in both crack initiation and failure stress with increased vascule size. In the FEA predicted results, crack initiation stress is between 60 and 75 per cent of final failure; while experimental crack initiation stress ranges from 70 to 80 per cent of failure strength. Generally, the FEA crack initiation stress is closer to the experimental data than the predicted final strength. Such a difference is understandable since the FEA is based on a continuous model under application of load, whereas in the experimental testing the structural micromechanics undergo significant change as the damage propagates. Thus, more sophisticated FEA models will be required to obtain more accurate predictions. Notwithstanding the shortcomings of the FEA undertaken to date, the models are able to provide a composite engineer with a basic tool for gauging the likely influence of hollow vascules within CFRP composite laminates.

It is also worth noting the reduction in compressive strength with the inclusion of hollow vascules within a laminate. Reductions in compressive strength ranging from 13 per cent (80 µm) to 70 per cent (560 µm) have been observed. The testing of the 710 µm vascules is omitted since the trend is observable from the results for 80–560 µm vascules. The huge strength reduction is modest for smaller vascule diameters (i.e. 80 µm) but is significant for the vascule dimensions greater than 150 µm, i.e. 13 versus greater than 35 per cent. These results suggest that a threshold value could exist below 80 µm that has negligible detrimental effect. Conversely, as the vascule diameter becomes large (greater than 400 µm) the negative effect is severe but tends towards being asymptotic. Such maximum and minimum threshold values may differ in different material systems. A similar finding has been reported by Kousourakis and co-workers (2008).

4. CONCLUDING REMARKS

A preliminary study of a next generation of bioinspired self-healing composite materials with embedded vasculatures is presented. Manufacturing methods to create hollow vascules within CFRP composite laminates have been proposed. Embedding these vascules in FRP composite laminates, off-axis with respect to the local fibre orientations, results in the creation of lenticular resin-rich pockets and local geometric disturbance of the fibre reinforcement. A series of cross-sectional micrographs of these lenticular resin pockets have been produced. Based on the micrographs, empirical relationships between the vascular diameter and resin pocket geometry have been established. These relationships are based on observations of vascular features within an IM7/8552 carbon/epoxy composite laminate system; such trends may be applicable to other similar composite systems. Two-dimensional FE models were generated according to these microscopic observations. The FEA has shown that under axial compression, cracks will be initiated at the vascule boundary at a 3 o’clock position owing to through-thickness tensile stress concentration. The cracks propagate towards the apex of the resin pocket and then into the laminate while further loading is applied. Final failure occurs in the resin pocket regions) out of total specimens tested. In general, over 75 per cent of tested specimens have shown failure within the resin pocket regions.

The decreasing trend of the relative compressive strengths in table 4 is further plotted in figure 7. An interesting trend can be observed in figure 7 that the compressive strength reduction is modest for smaller vascule diameters (i.e. 80 µm) but is significant for the vascule dimensions greater than 150 µm, i.e. 13 versus greater than 35 per cent. These results suggest that a threshold value could exist below 80 µm that has negligible detrimental effect. Conversely, as the vascule diameter becomes large (greater than 400 µm) the negative effect is severe but tends towards being asymptotic. Such maximum and minimum threshold values may differ in different material systems. A similar finding has been reported by Kousourakis and co-workers (2008).
owing to fibre micro-buckling. Such failure mechanisms are beneficial with regard to the proposed self-healing function since the healing process can be triggered by the crack propagating through the vasculature before structural failure. Compression testing results that are recorded using HSP have validated the FEA models proposed. The FEA results are in good agreement with the experimental data regarding crack initiation stress but overestimate failure strength. The reduction in experimentally determined compression strength because of the presence of circular vasculatures ranges from 13 to 70 per cent, depending on vascul diameter. These results provide a basic ‘toolbox’ for designing an advanced functional FRP composite laminate, e.g. for the purposes of self-healing, thermal management, etc., whereby the vascular dimensions can be tuned/tailored to rupture at desired loads.

APPENDIX A. MATERIAL PROPERTIES OF IM7/8552 Composite laminates

IM7/8552 Elastic Properties (Jumbo et al. 2007)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{1	ext{1T}}$</td>
<td>165 GPa</td>
</tr>
<tr>
<td>$E_{1	ext{1C}}$</td>
<td>145 GPa</td>
</tr>
<tr>
<td>E_{22T}</td>
<td>11.38 GPa</td>
</tr>
<tr>
<td>E_{22C}</td>
<td>10.20 GPa</td>
</tr>
<tr>
<td>E_{33T}</td>
<td>11.38 GPa</td>
</tr>
<tr>
<td>E_{33C}</td>
<td>10.20 GPa</td>
</tr>
<tr>
<td>G_{12}</td>
<td>5.12 GPa</td>
</tr>
<tr>
<td>G_{23}</td>
<td>5.12 GPa</td>
</tr>
<tr>
<td>G_{13}</td>
<td>3.92 GPa</td>
</tr>
<tr>
<td>v_{12}</td>
<td>0.3</td>
</tr>
<tr>
<td>v_{23}</td>
<td>0.487</td>
</tr>
<tr>
<td>v_{13}</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Hexcel 8552 Neat Epoxy Elastic Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>4.67 GPa</td>
</tr>
<tr>
<td>v_{12}</td>
<td>0.35</td>
</tr>
</tbody>
</table>

IM7/8552 Thermal Properties (Krueger et al. 2001)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{11}</td>
<td>6×10^{-7} K$^{-1}$</td>
</tr>
<tr>
<td>α_{22}</td>
<td>2.86×10^{-5} K$^{-1}$</td>
</tr>
<tr>
<td>α_{33}</td>
<td>2.86×10^{-5} K$^{-1}$</td>
</tr>
<tr>
<td>α (neat resin)</td>
<td>5.0×10^{-5} K$^{-1}$</td>
</tr>
</tbody>
</table>

IM7/8552 Failure Properties (Jumbo et al. 2007)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal tensile strength (S_{11T})</td>
<td>2.6 GPa</td>
</tr>
<tr>
<td>Longitudinal compressive strength (S_{11C})</td>
<td>1.5 GPa</td>
</tr>
<tr>
<td>Transverse tensile strength (S_{22T})</td>
<td>60 MPa</td>
</tr>
<tr>
<td>Transverse compressive strength (S_{22C})</td>
<td>290 MPa</td>
</tr>
<tr>
<td>Shear strength (S_{xy})</td>
<td>90 MPa</td>
</tr>
</tbody>
</table>

REFERENCES

CFRP laminates with circular vasculature C.-Y. Huang et al.

