Supplementary Material

Insights into the role of protein molecule size and structure on interfacial properties using designed sequences

Mirjana Dimitrijev Dwyer1, Lizhong He1,2,*, Michael James3, Andrew Nelson3, Anton P. J. Middelberg1

1 Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia

2Department of Chemical Engineering, Monash University, Clayton Victoria 3800, Australia

3 Bragg Institute, Building 87, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

* Author for correspondence (Lizhong.he@monash.edu)
DAMP1 bulk structuring (circular dichroism)

DAMP1 bulk structuring was investigated by circular dichroism (CD, Jasco 810 Spectropolarimeter, Easton, MD) using a 0.025mg/mL DAMP1 in Milli-Q water to eliminate the effect of buffer salts on the CD signal.

Figure S1. Circular dichroism profile of 0.025 mg/mL DAMP1 in milli-Q water. The lack of α-helical or other features in this spectrum confirm DAMP1 is unstructured in bulk solution, unlike DAMP4 [1], which shows highly α-helical bulk structuring.
Calculating d-DAMP4 deuteration extent (mass spectrometry)

To characterize deuterated DAMP4 (d-DAMP4), a Waters Quattro Micro API quadrupole mass spectrometer (Waters Corporation, Milford, MA, USA) with electrospray ionization (ESI) was used in positive ion mode. Lyophilised d-DAMP4 was resuspended in milliQ, then directly injected at a flowrate of 10μL/min. Control and data collection was performed by the Waters MassLynx software.

Manual reconstruction of the d-DAMP4 mass spectrum using the formula mass = (m/z).n – n (where n is charge number, 10 – 19 in this spectrum) for all detected peaks, then taking the average, yielded the d-DAMP4 mass of 11650Da. From the mass of h-DAMP4 (11116.5 Da) it was calculated that a total 531 of a possible 776 hydrogen atoms were replaced by deuterium atoms (68.43% total deuteration) to account for this increase in mass. Of the 776 hydrogens in the DAMP4 sequence, 193 are exchangeable (ie. bound to a nitrogen, sulphur, or oxygen atom, not a carbon), therefore the extent of deuteration on a non-exchangeable basis is 531/583 = 91.08%.

Figure S2. Mass spectrum of deuterated DAMP4. From the mass of 11650 Da, the deuteration extent was calculated to be 91.1% on a non-exchangeable hydrogen basis.
Interfacial Tension Measurements

Figure S3. Interfacial tension versus time for 3.2 µM DAMP4.

Figure S4. Interfacial tension versus time plots showing that very similar profiles are obtained with DAMP1-only as with mixtures of DAMP1 and DAMP4 (from Figure 1C) when results are compared at the same total bulk mass concentration (or molar helix equivalent).

References