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Advances in technology and engineering, along with European Union renewable energy tar-
gets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to
carbon emission reductions, but there is a need to ensure that these structures do not adversely
impact the populations that interact with them, particularly birds. We developed movement
models based on observed avoidance responses of common eider Somateria mollissima to
wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory
data that were collected post-construction of the Danish Nysted offshore wind farm were
used to parameterize competing models of bird movements around turbines. The model
most closely fitting the observed data incorporated individual variation in the minimum dis-
tance at which birds responded to the turbines. We show how such models can contribute to
the spatial planning of wind farms by assessing their extent, turbine spacing and configurations
on the probability of birds passing between the turbines. Avian movement models can make
new contributions to environmental assessments of wind farm developments, and provide
insights into how to reduce impacts that can be identified at the planning stage.
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1. INTRODUCTION

Many countries are increasing their use of renewable
energy (in particular, wind energy) in an effort to curb
the effects of climate change. Increasing numbers of
wind farms are being developed both onshore and
offshore, with potentially negative effects on wildlife,
especially birds. When birds exhibit avoidance beha-
viour towards turbines, wind farms may act as barriers
to movement [1,2], increasing flight distances and so ele-
vating energy expenditure. A lack of avoidance behaviour
puts birds at risk from mortality through collision with
these structures [3,4]. Wind farms may also affect birds
through habitat loss, either directly as a consequence
of the turbine ‘footprints’ or indirectly through avian
avoidance responses to turbines [5—7].

The ability to predict how individual birds respond
to a range of different wind turbine locations and con-
figurations would be beneficial during wind farm
planning to minimize barrier effects and/or collision
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risk. For example, under what circumstances are birds
more likely to fly around or through an array of turbines?
Until recently, the only types of movement data available
on bird and wind farm interactions were: (i) observational
watches recorded during environmental impact assess-
ments (EIAs) consisting mainly of information on flying
heights in the immediate vicinity of the wind farm; or
(i) long-distance movements from bird ring recoveries
that provide general information on movements, from
which it may be deduced, assuming the most direct
route, whether a bird could have interacted with a wind
farm. Therefore, it was not possible until recently to
describe in detail the movements of birds in response to
wind turbines; however, technologies such as surveillance
radar and satellite/ GPS telemetry can now provide accu-
rate movement data at finer spatial and temporal
resolutions [8—11].

Despite being an important factor in determining
animal distributions, animal movement often remains
poorly understood [12,13]. Advances in the accuracy,
energy management and miniaturization of animal
location tags are now providing a rich source of data,
which can be used to quantitatively study movement
paths [12,14-19]. Methods to quantify animal move-
ment can be mapped onto a continuum, ranging from
those that describe emergent or summary properties

This journal is © 2012 The Royal Society
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of the data such as sinuosity, first passage time,
scale invariance and fractal dimension [20-22], to
explicitly mechanistic models that aim to describe the
underlying movement process. These more complex
‘parametric’ models can be used to identify dependen-
cies between animal movement and biotic or abiotic
features co-occurring on the landscape [14,17], often
using modified correlated random walks or diffusion
processes [23,24]. The increase in cheap and accessi-
ble computing power enables relatively complex
parameter-rich models to be fitted to data using
Bayesian model-fitting machinery. The same model for-
mulations can then be used to link movement processes
to features of the landscape or covariates such as habitat
type, and then to predict an animal’s movement path,
allowing one to anticipate the consequences of landscape
change. Because our goal was to study the effects of wind
farm design on bird avoidance behaviour, we adopt this
second approach in what follows.

The aim of this study was to illustrate how data
collected during the EIA process could be used to aid
planning and development of future wind farms, and
minimize their impacts on wildlife. This study is, to our
knowledge, the first of its kind to apply current methods
from movement ecology to radar data collected during the
post-construction assessment of an offshore wind farm,
and to quantitatively describe the movements of birds
around a wind farm. Fitting complex models to data is
often limited by classical estimation techniques; therefore,
we used Bayesian methods of analysis and performed
inference with Just Another Gibbs Sampler (JAGS,
[25]). We give two examples of how such a model can be
used to improve the assessment of the impacts of wind
farms on birds: (i) the effect of wind farm dimensions on
the number of birds passing between turbines; and
(ii) the effect of different configurations of turbines on
the avian permeability of a wind farm.

2. METHODS
2.1. Data collection and processing

Data were collected from the Nysted offshore wind
farm, which comprises 72 wind turbines in eight
north—south-oriented rows, 850 m apart at 480 m inter-
vals east—west, covering an area of ca 60 km? in the
western Baltic Sea south of Denmark. Flight trajec-
tories of flocks of autumn-migrating common eider
Somateria mollissima were recorded during the daytime
using surveillance radar mounted on an observation
tower ca 5 km from the wind farm [26]. For the duration
of observation periods, all turbines were operational;
therefore, observations are of eider flocks mainly
responding to active turbines. An estimated 345 000
common eiders migrate past the Nysted offshore wind
farm every year, from breeding areas in the northern
Baltic to wintering areas in the Inner Danish waters
and in the Wadden Sea [26]. Flocks of birds entering
the detection area created an echo on the radar moni-
tor, and by observing the echoes, the migration
trajectories of these flocks could be determined (see
Desholm & Kahlert [1] for data collection methods).
Only east—west trajectories were used in this study
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owing to the position of the radar station in relation
to the wind farm and the predominant orientation of
autumn migration. Of these trajectories, we used only
those that came within 500 m of a wind turbine, as
birds showed very little response to the wind farm at
distances greater than this [2]. The selected trajec-
tories were converted from continuous lines to discrete
points at 100 m intervals using ArcGIS (v. 9.3) and
Hawth’s Analysis Tools for GIS [27]. On the basis of
the relative linearity and the length of the movement
trajectories, sampling steps of 100 m were judged to
be a sensible use of computer time while resulting in
no loss of movement information. The trajectories
were sampled at regular distance intervals rather than
at time intervals because flight speeds of migrating
eider are remarkably constant [28]. The final dataset
contained 89 flock trajectories each comprising 70—
230 data points (median = 127). Flight trajectory
data were collected for 24 days, between 11 September
2003 and 28 October 2005, and the flock sizes associ-
ated with these trajectories ranged from 7 to 200
individuals (median = 35).

2.2. Models

Here we present four models, each designed to describe
the movements of birds in response to wind turbines.
Models 1 and 2 assume that all birds respond in the
same way, i.e. the parameters are constant across all
individuals, while models 3 and 4 are hierarchical and
include individual variation, i.e. hyper-parameters are
sampled for each individual from a population level dis-
tribution. We assume that individual birds travel
directly, and at a constant speed [28] from a starting
location towards a final destination, and exhibit avoid-
ance behaviour towards wind turbines. The turbines are
assumed to rotate at a constant speed because of the gear-
ing mechanism associated with the generator. For each
observation, j, along a particular trajectory i (obs;),
the models estimate the direction of movement to the
next observation (obs;;; 1) by resolving the forces attract-
ing a bird to its final destination and repelling it away
from a wind farm, the proportion of each depending on
the distance between the bird and the wind farm (see
figure 1 for a diagram), and the method of resolution dif-
fering between models. The direction (@, measured in
radians) between each pair of observations is assumed
to be independently drawn from a wrapped Cauchy dis-
tribution with parameters w (the mean direction) and p
(the mean cosine of the angular distribution). The
wrapped Cauchy is one of a number of possible circular
distributions available, and exploratory analyses revealed
the wrapped Cauchy distribution to better fit the data
than the von Mises distribution. The likelihood function
for the data modelled this way is

L(dyy --- ¢NnN|IU«11 C M Ny s p)
N n;i—1

= H H C(d)ij,y“ijvp)a

i=1 j=1

(2.1)

where N is the number of trajectories (i.e. 89) n; is the
total number of observations in trajectory i, ¢; is the
observed direction of the next point in the trajectory
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destination

Figure 1. A diagram of the general principles of the model
with an example movement trajectory (dot-dashed line) and
variables within the model. Black filled circles represent
wind turbines, while grey filled circles represent the positions
of birds along the trajectory. A is the overall repulsion exerted
on a bird at a given location by the wind farm; AT is the per-
pendicular vector to A; B is the vector of attraction towards
the final destination and d is the distance at which a bird turns
halfway from B to AT.

from point j, u;; is the predicted mean direction and C
denotes the wrapped Cauchy distribution [29] with
density function
1 1-p°
C =—
(d))”’»p) 277_1+p2 *QPCOS((b*[.L)
0<u<2m0<p <1, 0< ¢ <2m

(2.2)

(i) Model 1
A model that assumes the direction of travel is simply
the sum of the attractive force and the repellent force
of the turbines (adjusted by a scaling factor). The repel-
ling force, Vj, exerted by each turbine in the wind
farm is described with an inverse power law with
power p, thus

1

Vi = e, (2.3)

ik
where e, is the unit vector from the kth wind turbine in
the direction of the jth observed location of trajectory ¢,
and [, is the distance between these two points. A,
which can be split into its = and y components (a,/
a,), is the sum of these forces summed over all turbines
and is the overall repulsion exerted on a bird at a given
location by the wind farm and is therefore given by

Ay =) Vi
k

The attraction towards the final destination is rep-
resented by the vector B, where u is the bearing/
direction to the final destination. The distance between
the starting location (obs;) and the final destination
(obsyy,) is assumed to be sufficiently great that B does
not change substantively over the course of the

trajectory, thus
B— ( cos u )
sin u
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(2.4)

(2.5)

The resultant unit vector (F ;) describing the direc-
tion of travel is thus

ot ) U BEAL g
SIN Wy IB + cAj
where c is a scaling factor and from which we can derive
the bearing w;. The bird then travels in this direction.

(ii) Model 2

A model constrained to contour round the turbines.
Vectors A;; and B are again the overall repulsion of
the wind farm and attraction of the destination respect-
ively, and are estimated as for model 1 but F,, the
resultant direction of travel, is no longer a simple
weighted sum of the two. Instead we choose a direction
between that of the bird’s destination and a contour of
equal repulsion around the wind farm. This ensures that
the bird moves away from the wind farm towards its
destination, tending to move closer to its destination
at nearly all times, while contouring round the wind
farm as necessary. We calculate one direction of the
contour A’ perpendicular to Ay and then choose
which direction to travel on the contour, A;g, with a
probability dependent on which direction is closer to
that of its destination (inverse logit is a sigmoidal func-
tion that maps the real numbers onto [0,1]). We then set
the resultant direction of travel, F;;, to be a weighted
sum of AE]F- and B, scaled by the extent to which A
and B are in the same direction:

1
bj]' = logitilkb <A7j]' -B + >,

dr
T
|A
Fy = Rk
|F/ij|
where
A = <—ay> and
ar
AT _ A’ with probability logit~'k.A’ - B
—A’/ otherwise

At each movement step, a bird must choose whe-
ther to fly directly towards its destination (B) or to
follow the contour (A};) in response to the turbines.
The direction of travel will be close to B when Ajis
sufficiently small or when travelling in the direction
of B decreases the wind farm repulsion (A;;- B is posi-
tive). Consequently, b; will be close to 1 and the bird
will continue directly to its final destination. However,
b; will be closer to 0 and the bird will turn more
towards AZ-T]- when A is large, and travelling in the
direction of B increases repulsion (A ;- B must be nega-
tive). In the absence of strong repulsion, the bird will
follow B.

The decision on how far to turn towards A;f depends
on the distance to the turbines: the parameter d is the
distance from a single turbine at which a bird would
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Table 1. Prior distributions for the parameters in the models.

parameter description prior

u bearing to final destination uniform (3.1, 3.6)
p the cosine of the angular distribution of the wrapped Cauchy uniform (0.7, 1)

c model 1 scaling factor uniform (0, 100)

d distance at which bird turns halfway from B to Ag uniform (0.2, 5)

P power of repelling kernel uniform (1, 5)

ki, how quickly bird moves from B to A?j uniform (0, 20)

ke how frequently the bird will turn in the correct direction uniform (—20, 0)
shape shape parameter of gamma distribution of individual d; values gamma (0.01, 0.01)
T precision of normal distribution of 1 values uniform (1, 100)

turn exactly half-way from B to AiTj, and ky, is a scaling
factor that determines how quickly the bird’s direction
shifts from B to AiTj as its distance to the turbines
decreases. For example, a high value of &, will make a
bird turn away suddenly at d, whereas a low value
will make it start turning away at a small angle earlier.
However, in either case, when the bird has approached
sufficiently close to the turbines, it will follow the AEJF
contour, which keeps the magnitude of the repulsion
constant until it can get round them.

As well as deciding how much to turn away, the bird
must also choose which direction to turn. If A;; and B
are in exactly opposite directions, then the bird will ran-
domly choose either left or right, as neither choice will
make it reach its destination quicker. Otherwise, the
bird will tend to turn from B in the direction in
which A, is closer, which should correspond to the
shorter route round the turbines. Whether the bird is
to turn to the right or to the left is determined by a
Bernoulli random variable. The scaling factor k. deter-
mines how frequently the bird will turn in the correct
direction, with high absolute values of k. indicating that
it will always choose the shorter route to its destination
while a zero value for k. would indicate a 50 : 50 chance
of going either way around the wind turbine array.

(iii) Model 3

In model 2, we assumed that parameters were constant
across all trajectories. In model 3, we relaxed this
assumption and fitted the hyper-parameter d; separ-
ately for each of the 89 trajectories to include
individual variation in the distance at which birds
responded to the wind turbines. The d; values were
taken from a gamma distribution because di must be
positive and the gamma distribution takes only real
and positive values:

Shape) . (2.8)

d; ~ gamma (shape, 7

(iv) Model 4

In model 3, we fitted the hyper-parameter d; separately
for all trajectories but assumed that « was constant
across all trajectories. In model 4, in addition to fitting
d; separately, we also fitted the hyper-parameter v sep-
arately for each of the 89 trajectories to include
individual variation in the bearing to the final destina-
tion. The w; values were taken from a mnormal
distribution because it was known that all birds were
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heading in approximately the same direction, but that
there would be some variation around this mean direc-
tion. However, the variation was unlikely to span 27 and
0, meaning a circular distribution was not required:

w ~ normal (, 0%). (2.9)

2.3. Model parameterization

Models were fitted using Monte Carlo Markov chain
(MCMC) techniques as implemented in JAGS [25].
Priors were all diffuse and uninformative (for prior dis-
tributions, see table 1). For each model, we ran three
MCMC chains for 100 000 iterations and examined con-
vergence and autocorrelation for the model parameters.
Convergence was assessed using the Gelman—Rubin
convergence statistic [30], which compares variance
between and within Markov chains. Values close to 1
indicate convergence.

2.4. Goodness of fit

To compare the fit of the four competing models, we used
posterior predictive checks (PPCs) [31]. We used the
PPC method rather than a deviance information cri-
terion [32] because it allowed us to assess the ability of
models to fit properties of the movement trajectories
not explicitly included in the modelling process [14].
Choosing unmodelled features of the trajectories guards
against rewarding overfitting to the data, and we further
avoid this by randomizing the individual flock par-
ameters (where present) and their simulated starting
positions. We assessed whether movement trajectories
produced by the models had features similar to those
observed in the data for three characteristics: (i) the
number of trajectories that entered the middle of wind
farm, i.e. trajectories that passed between the five central
turbines on the eastern boundary of the wind farm. This
feature of the data was chosen because it quantified the
number of individuals entering and moving through
the central area of the wind farm and not only the periph-
ery; (ii) the number of trajectories that passed to the
south versus the north of the wind farm and did not
enter the array; and (iil) the straightness index of trajec-
tories. The straightness index (which indicates deviation
from a straight line) is the ratio of the net movement
divided by the gross movement and is described in
Benhamou [21]. Data more than 5 km east of the eastern
edge of the wind farm were excluded from the PPC calcu-
lations of the straightness index because we were
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interested in movements in response to the wind turbines.
Five kilometres were considered large enough to include
any potential long-range avoidance responses.

We sampled from the joint posterior distribution of
each model to obtain matched combinations of par-
ameters, sampling equally from each of the 89 tracks
when the model contained trajectory-specific par-
ameters. The final size of the posterior chain, and thus
the number of independent parameter combinations pre-
sent, was used to determine the number of parameter sets
that could be extracted. Movement trajectories were then
simulated using these sampled parameters, with starting
locations selected from the original data. This simulation
process was repeated 50 times for each parameter set
to account for the stochasticity in the model, and the
characteristics of trajectories were recorded and com-
pared against the original data. The model that
produces tracks that were most representative of the
original data was chosen for the remainder of the study.

2.5. Simulations

Using the parameter estimates from the best chosen
candidate model, we simulated movement trajectories
of birds through areas with wind turbines. We ran
simulations to investigate:

(i) the effect of wind farm dimensions, i.e. inter-
turbine distances and the number of turbines,
on the number of birds passing between
turbines, and

(ii) the effect of different configurations of turbines
on the avian permeability of a wind farm.

(i) The effect of wind farm dimensions on the number of
birds passing between turbines

If a species has a high risk of collision mortality, it is
beneficial to design wind farms that ensure the birds
do not fly through the array of wind turbines. There-
fore, it is important to be able to predict the number
of birds likely to pass between turbines at varying tur-
bine spacing. A wind farm comprises horizontal rows of
turbines and vertical columns. Ignoring potential con-
straints on turbine spacing owing to the effects on
turbine efficiency, we varied the distance between
rows of turbines (from 200 to 1000 m at intervals of
20m) and also the number of columns in an array
(from 1 to 8), using the Nysted wind turbine array as
a template. We simulated 100 trajectories for each com-
bination of inter-turbine distance and number of
columns, and recorded the number of trajectories that
entered the wind farm through the central five turbines
on the eastern boundary of the wind farm. To account
for any possible differences owing to approach angle,
the trajectories were started from 10 different locations.

(ii) The effect of different configurations of turbines on
the avian permeability of a wind farm

Some species may be more sensitive to increased energy
costs due to wind farms acting as barriers to movement,
rather than having a high risk of collision mortality. In
these situations, it may be more important to have

J. R. Soc. Interface (2012)

permeability through a wind farm development area.
We define avian permeability as the capacity of a delim-
ited development area to be infiltrated by birds. Avian
permeability was assessed by computing a straightness
index as described in Benhamou [21]. If an area was
completely permeable, then the distance measures
would be the same and the straightness index would
be one. The greater the disparity, the less permeable
the area and smaller the index of straightness. We inves-
tigated the permeability of a 100 km? area containing
100 turbines in different configurations. This average
turbine density (1 turbine km™') is similar to that of
the Nysted wind farm (1.2 turbines km™') yet still
allowed plausible scenarios to be explored. The concept
of a specific area within which turbines could be placed
was intended to represent, albeit at a smaller scale,
development areas such as the Crown Estate’s round
three zones or exclusivity agreement areas and constrain
turbines to within a defined area. The scenarios were:

(i) equal spacing across the 100 km?® development
area (inter-row distance = 1000 m; inter-column
distance = 1000 m);

(ii) diamond configuration with equal spacing across
the development area;

(iii) equal spacing within the central 25 km? (inter-
row distance = 500 m; inter-column distance =
500 m);

(iv) four blocks containing 25 turbines with equal
spacing (inter-row distance = 500 m; inter-
column distance = 500 m); and

(v) random spacing with the 100 km? development
area.

For each scenario, we simulated 100 trajectories using
our best fitting model. To account for any possible
differences owing to approach angle, this was repeated
from 10 different start locations on an arc 20 km from
the centre of the 100 km? area, giving a total of 1000
simulated trajectories. Twenty kilometres was con-
sidered a suitable distance, as this corresponded to the
maximum distances from the centre of the Nysted
wind farm to start points of the observed data used to
parameterize the model. The trajectories were targeted
through the centre of the 100 km?” area; therefore, in the
absence of the wind farm, all trajectories would cross at
the centre point.

3. RESULTS
3.1. Parameters

We generated 600 000 samples from the posterior distri-
butions of all parameters using three chains, a burn-in
period of 100 000, and an initial thinning rate of 1 in
100. For all parameters, chains were considered to
have converged with Gelman—Rubin convergence stat-
istic values less than 1.2; however, autocorrelation was
detected between posterior samples of the parameters
d and p. We therefore thinned these samples further
by a rate of 1 in 6 to give a final sample size of 500.

A summary of parameter estimates is presented in
table 2 and density and trace plots for the parameters
are included in the electronic supplementary material.
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Table 2. Mean estimates of parameters within the models (lower and upper bounds of 95% credible intervals). (M-dash (—)

indicates where parameters were not included in models.)

parameter model 1 model 2 model 3 model 4

U 3.246 (3.240, 3.252) 3.291 (3.285, 3.296) 3.296 (3.292, 3.300) 3.291 (3.269, 3.312)

p 0.855 (0.852, 0.859) 0.884 (0.881, 0.887) 0.899 (0.896, 0.901) 0.920 (0.918, 0.923)

c 0.013 (0.011, 0.015) — — —

d — 0.266 (0.253, 0.278) 0.239 (0.221, 0.256) 0.244 (0.228, 0.260)

D 0.482 (0.372, 0.608) 1.701 (1.651, 1.743) 1.599 (1.558, 1.639) 1.621 (1.579, 1.664)

ky, — 0.319 (0.306, 0.332) 0.387 (0.374, 0.400) 0.380 (0.369, 0.392)

ke —1.350 (—1.524,—1.177) —1.323 (—1.499,—1.155) —0.803 (—0.883,—0.727)
shape — — 25.24 (18.08, 33.75) 25.22 (18.07, 34.11)

T — — — 81.11 (58.36, 97.63)

Model 1 estimated u to be 3.24 radians, and models 2—4
produced estimates of 3.29 radians, putting the destina-
tion point in a south-westerly direction. Model 1 was
distinctly different from the other models that shared
parameters with similar estimates and overlapping cred-
ible intervals. For example, the mean estimate of d was
0.266 (95% CI = 0.253, 0.278) for model 2, 0.239 (95%
CI =0.221, 0.256) for model 3 and 0.244 (95% CI=
0.228, 0.260) for model 4, therefore, models 3 and 4
described trajectories that responded to turbines only
when they were closer compared with model 2. The
mean estimate for k, was also less for model 2 than
for models 3 and 4 therefore models 3 and 4, described
trajectories that responded more suddenly at distance d
to the turbines rather than turning away earlier. Par-
ameter p was greater for model 2 than for models 1, 3
and 4; therefore the repelling kernel extended further
from the turbines for model 2 while model 1 had the
least repulsion (p=0.48). The shape parameter in
models 3 and 4 was estimated at 25.24 (95% CI = 18.08,
33.75) and 25.22 (95% CI = 18.07, 34.11), respectively.
In model 4, (o ?) was estimated to be 81.11. Therefore,
the individual d; hyper-parameters were distributed with
a mean of d and a standard deviation of 0.05, while the
individual u; hyper-parameters were distributed with a
mean of v and a standard deviation of 0.01.

3.2. Model selection

To assess the fit of models, we compared features of
the original data to simulated tracks using PPCs.
The characteristics compared were: (i) number of
tracks entering the central area of the wind farm,
(ii) number of tracks flying south versus north of the
wind farm (assessed as the number of tracks flying
south divided by the number flying north), and
(iii) the straightness index. For each characteristic com-
pared as a PPC, there were 22 250, i.e. 50 replicates of
445, simulated tracks. Five of the original data tracks
(5.62%) entered the central area of the wind farm.
The mean percentage of simulated tracks entering the
wind farm was 42.20 per cent (95 percentile interval =
38.65%, 45.84%) for model 1, 0 per cent for model 2,
5.49 per cent (95 percentile interval = 4.30%, 6.74%)
for model 3 and 4.23 per cent (95 percentile interval =
3.15%, 5.40%) for model 4. Of the original 89 tracks, 52
(58.43%) flew to the south of the wind farm, while 9
(10.11%) flew around the north, giving a ratio of 5.78
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to 1. For model 1, the mean percentage of flights travel-
ling south versus north of the wind farm was 20.21 (95
percentile interval = 10.20%, 38.02%), for model 2 =
38.89% (95 percentile interval = 22.88%, 63.53%),
model 3 =44.60% (95 percentile interval =24.07%,
82.26%) and for model 4=4.40% (95 percentile
interval = 3.86%, 5.12%). The mean straightness index
of the original data was 0.917 (95 percentile interval =
0.799, 0.978) while for model 1 the index was 0.982 (95
percentile interval =0.981, 0.982), for model 2 was
0.940 (95 percentile interval = 0.937, 0.943), for model
3 was 0.947 (95 percentile interval = 0.944, 0.949) and
for model 4 was 0.937 (95 percentile interval = 0.934,
0.940). Models 3 and 4, i.e. those that included indivi-
dual variation, had characteristics most similar to the
observed data and of these, model 4 was more represen-
tative across the three PPCs (figure 2). Model 4 was
therefore adopted as the best fitting model and used to
simulate tracks for the remainder of the study.

3.3. Stmulations

(i) The effect of wind farm dimensions on the number
of birds passing between turbines

As the distance between turbines increased, so did
the proportion of birds travelling between turbines
(figure 3). With eight columns of turbines at 200 m
spacing, no birds passed between the turbines. Increas-
ing the inter-turbine distance to 500 m increased the
percentage of birds to more than 20 per cent, while a
spacing of 1000 m increased this further to 99 per
cent. For a given distance between turbine rows,
increasing the number of columns in a wind farm
decreased the number of birds entering the array. A dis-
tance of 500 m between turbine rows caused 99 per cent
of birds to enter the wind farm when there was only one
column of turbines, while increasing the size of the wind
farm to two columns decreased this to 83 per cent.
Therefore, by increasing the number of turbine columns
in an array, it was possible to increase the inter-turbine
distance and raise the threshold before which 50 per
cent of birds entered the wind farm (figure 3).

(il) The effect of different configurations of turbines on
the avian permeability of an area

The permeability, i.e. straightness index of the area dif-
fered for each of the turbine scenarios (figure 4). The
straightness index ranged from 0.796 to 0.998 across
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Figure 2. Example movement trajectories of common eider around the Nysted offshore wind farm, Denmark: (a) 89 observed
tracks, and 89 tracks simulated using parameters from (b) model 1, (¢) model 2, (d) model 3 and (e) model 4. Black dots
denote wind turbines. Note that apparent thick lines are due to superimposition of trajectories. Data are projected using the Uni-
versal Transverse Mercator (UTM) geographic coordinate system (zone 32° N). Latitude and longitude are displayed in metres.

the scenarios. Scenario (iv) (four blocks of turbines) had
the highest mean straightness index and was therefore
highly permeable (mean = 0.989, range = 0.868—0.998)
while scenario (iii) (central block of turbines) had the
lowest mean straightness index (mean = 0.952, range =
0.843-0.998). However, scenario (ii) (diamond configur-
ation) had the single lowest value for straightness at 0.796.

4. DISCUSSION

We demonstrate how data collected on bird movements,
post-construction of a wind farm can be used to parame-
trize avian movement models. This has practical
applications in EIAs of wind farm developments and

J. R. Soc. Interface (2012)

associated implications for planning. Such models are
increasingly important, because the European Union
has set targets to generate 20 per cent of its energy
from renewable sources by 2020 [33] and hence there
has been a rapid increase in numbers of proposed wind
farm developments. With more wind farms, concerns
grow over the potential adverse effects of their cumulat-
ive impacts on wildlife populations, in particular birds.
Despite increasing numbers of avian studies on the effects
of wind farms, there remains a lack of understanding of
the interactions, i.e. avian avoidance response, between
birds and wind turbines for many species, limiting the
ability to predict the likely effects of future developments.

Wind farm EIAs and post-construction monitoring
invariably record bird movement data in and around
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Figure 3. Contour plot of the proportion of simulated eider trajec-
tories entering a wind farm through the central five turbines on
the eastern boundary. Wind farms comprised varying numbers
of columns, and distances between the turbine rows varied.

the (proposed) wind farm development area. The types
of data recorded range from visual observations, i.e.
vantage point watches [34] to radar and telemetry
data [1,8] with the latter becoming increasingly avail-
able. The increase in data associated with individual
birds gathered at finer resolution presents an opportu-
nity to investigate the (potential) impacts of wind
farms on birds using techniques not previously used in
this research field. To date, the majority of data ana-
lyses regarding avian movements around wind farms
have been qualitative, e.g. describing species-specific
flight heights and abundance, although some studies
have taken a more quantitative approach using statisti-
cal models for example, to assess golden eagles Aquila
chrysaetos home ranges and space use [35]. One obvious
exception is the Band model [36], which is a mechanistic
model to estimate collision risk. In this study, we
present a method using mechanistic models parameter-
ized using radar data, data increasingly recorded at
wind farm sites, in an effort to bridge this quantitative
analytical gap.

Of the movement models presented, model 4 cap-
tured more of the variability in the observed data
with simulated trajectories more closely resembling
observed trajectories (figure 2). Model 4 incorporated
the most individual variation with variation in both
the distance at which birds responded to the wind tur-
bines and the bearing to the final destination,
suggesting that individual behaviour is a significant
factor that should be considered when formulating
these movement models. As well as graphically explor-
ing the data, we assessed model fit using PPCs
((i) the number of simulated trajectories to enter the
wind farm through the central five turbines on the east-
ern boundary of the wind farm, i.e. the middle of the
wind farm; (ii) the number of tracks that navigated

J. R. Soc. Interface (2012)

to the south versus the north of the wind farm; and
(iil) the straightness index). Even though these features
of the data were not modelled explicitly, they were
adequately captured by model 4, indicating this to
be the preferred model. A modification that could
improve model fit would be to model turning angle
between movement steps as well as bearing, as this
would incorporate any autocorrelation between the
movement steps.

In this study, we provide two example uses of a
model to support the environmental assessment process
of wind farms. The first example is relevant for species
vulnerable to collision and thus applicable to known
species’ hot spots, e.g. migration corridors or winter-
ing/breeding areas. For such species, it is beneficial to
be able to predict the dimensions and spatial configur-
ation of turbines that would reduce the probability
that individuals fly through the wind farm. By varying
turbine row spacing, and column number, we influenced
the number of birds entering the centre of the wind
farm (figure 3); the smaller the spacing, the fewer
birds entered the wind farm. Also, as the number of
rows in an array increased, the greater the inter-turbine
distance could be before birds flew between turbines.
Both these results hold owing to the avoidance response
of the birds. However, birds continued to pass between
peripheral turbines, for example cutting off a corner
rather than flying straight through the entire array,
suggesting that designs eliminating corners may be ben-
eficial. Of the configurations presented in this study, it
was the diamond array (figure 4b,g) oriented with the
main direction of travel, i.e. east to west, which pro-
duced the lowest straightness index record. The
availability of such ecological knowledge enables wind
farm design to balance technological and engineering
constraints (for example, the minimum and optimal
proximity of turbines and their placement [37]) with
environmental considerations.

For species known to avoid wind farms, turbines
ultimately act as barriers to movements with the conse-
quent additional distance travelled increasing normal
energy requirements. This may especially be the case
for breeding seabirds, which forage several times a day
and may commute past wind farms [38]. To explore
the concept of permeability, we considered five different
wind farm scenarios (figure 4), and simulated trajec-
tories of birds travelling through the developed area.
Permeability was least when turbines were spaced
equally across the central 25 km” area (scenario (iii)),
causing individuals to travel further to reach their des-
tination (figure 4¢,h). Although scenario (ii) (diamond
configuration) had the lowest single value of straight-
ness index, it was a function of the orientation of the
diamond configuration and overall scenario (iii) would
keep more birds from passing between turbines, thus
reducing collision risk, while having the least impact
in terms of energetic requirement. The diamond
configuration (scenario (ii)) proved less permeable
than a square of similar size (scenario (i)) when oriented
in line with the main direction of movement
(figure 4a,b,f,g) with more birds directed around the
outside of the turbine array. This suggests that a dia-
mond array may reduce the number of birds entering
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simulated trajectories. Black dots represent wind turbines. Dashed box represents the 100 km? wind farm area. (f-7) Histograms
of straightness index assuming wind farm scenarios (i)—(v) ((i) equal spacing across the 100 km? development area. Inter-row
distance = 1000 m and inter-column distance = 1000 m; (ii) diamond configuration with equal spacing across the development
area; (iii) equal spacing within the central 25 km?. Inter-row distance = 500 m and inter-column distance = 500 m; (iv) four
blocks containing 25 turbines with equal spacing. Inter-row distance =500 m and inter-column distance =500 m; and
(v) random spacing with the 100 km? development area). Data are projected using the UTM geographic coordinate system

(zone 32° N). Latitude and longitude are displayed in metres.

a wind farm and thus being at risk from collision. Four
blocks of turbines (scenario (iv)) had the greatest per-
meability and the least variation, suggesting for this
example at least, that having several smaller wind
farms may have advantages over one larger wind farm
when barriers to movement is the main concern. Such a
modelling approach provides extensive opportunities to

J. R. Soc. Interface (2012)

explore scenarios and the potential impacts on bird move-
ments, thus incorporating environmental considerations
in the optimal wind farm design.

The results generated by this study are based on sev-
eral assumptions. We assume that avian avoidance
behaviour is manifest at the level of the wind turbine,
and although cumulative, the repulsion is not to the
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wind farm structure as a single entity. This is an
assumption of the model and consequently the model
predicts that a bird is more likely to avoid an array of
wind turbines than to avoid a single row of turbines
and this is perhaps unlikely for all species. The model
was parametrized using data collected from a single
species, common eider, and it is unlikely that all species
exhibit the same behaviour. However, this is, to our
knowledge, the first attempt at such a model and with
more data for different species, the model could be
extended. Also, owing to limitations of the data collec-
tion method, the model was parameterized only with
data from the daytime and it would benefit from
additional night-time data as birds may respond differ-
ently. The model presented describes only changes in
movement in terms of latitude and longitude because
the data available were from surveillance radar, but it
is known that birds may also adjust their altitude in
response to a wind farm, although apparently not
affecting the avoidance response [1]. Similarly, we
model movements around a wind farm surrounded by
sea; so topography will have no influence on bird move-
ments, yet this would not be the case for onshore wind
farms where birds are likely to respond to a variable land-
scape. Wind speed was also excluded from the model
because the avoidance response has previously been
shown to be consistent irrespective of the entire range of
experienced crosswind conditions [1,25]. Eider migration
generally takes place under good conditions (eiders stop
migrating during inclement weather, such as very strong
winds and in the face of frontal systems and heavy preci-
pitation); so the results presented are expected to be
representative of normal migratory conditions.

In conclusion, we demonstrate that avian movement
models enhance wind farm planning and enable a more
flexible approach that can incorporate not only econ-
omic and engineering, but also ecological data to
reduce the negative effects of wind farms on birds. In
the future, our ability to parameterize such models
depends entirely on data availability. There is a lack
of post-construction monitoring and associated data
[4,39] and it is fundamental that this shortfall is
rectified to further progress.
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