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The most commonly used dose–response models implicitly assume that accumulation of dose
is a time-independent process where each pathogen has a fixed risk of initiating infection.
Immune particle neutralization of pathogens, however, may create strong time dependence;
i.e. temporally clustered pathogens have a better chance of overwhelming the immune par-
ticles than pathogen exposures that occur at lower levels for longer periods of time. In
environmental transmission systems, we expect different routes of transmission to elicit differ-
ent dose–timing patterns and thus potentially different realizations of risk. We present a
dose–response model that captures time dependence in a manner that incorporates the
dynamics of initial immune response. We then demonstrate the parameter estimation
of our model in a dose–response survival analysis using empirical time-series data of inhala-
tional anthrax in monkeys in which we find slight dose–timing effects. Future dose–response
experiments should include varying the time pattern of exposure in addition to varying
the total doses delivered. Ultimately, the dynamic dose–response paradigm presented here
will improve modelling of environmental transmission systems where different systems have
different time patterns of exposure.

Keywords: dose–response; anthrax; disease dynamics; survival analysis;
microbial risk assessment
1. INTRODUCTION

Dose–response functions are central to microbial risk
assessments. In transmission systems, dose–response
modelling is important in evaluating risk given an
environmental pathogen exposure. Exposure occurs
when susceptible individuals contact a pathogen
source, usually an environmental reservoir or an
infected individual. These exposure events can be
characterized by the frequency and magnitude of patho-
gens that reach a susceptible host. The route of
transmission, exposure behaviours and physical aspects
of the system will cause the dose–timing patterns of
pathogen exposure to vary. For example, in influenza
transmission, a direct pathogen exposure from a
sneeze may be characterized as a large bolus exposure
event while aerosolized exposure may be constant over
a long period of time but exposure consists of a smaller
number of pathogens at any given time.
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Biologically, the immune system may handle varying
exposure patterns with varying efficiency. Pathogen
inoculations that occur very close together may carry
a comparable risk of infection to an equivalent total
dose occurring at a point in time if the immune response
is slow compared with the period of exposure for the
repeated doses. Longer periods between pathogen
exposures, however, may allow the immune system to
eliminate the pathogen and recover between each inocu-
lation. The rates at which the immune system responds
and clears the pathogen are clearly important in deter-
mining the accumulation of multiple inoculations. For
these extreme instances, short versus long inoculation
intervals, we can conclude that inoculations either
accumulate as a sum or should be considered as
separate events. However, it becomes unclear how
accumulation of pathogen levels within the host may
vary for patterns that occur on a time scale where the
innate immune system has begun to respond but
failed to clear all the pathogens.

Immune response is variable depending on many fac-
tors, such as pathogen type, location of pathogen and
This journal is q 2010 The Royal Society
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prior exposure. We specifically focus on the dynamics of
the initial immune response. This includes the innate
immune response, natural host barriers (e.g. mucosal
clearance) and potentially standing elements of the
acquired immune response. It is possible, however,
that given long enough time frames of exposures that
the adaptive immune response will also act as an
initial response to future inoculations. Our hypothesis
is that these initial host protections are not constant
in nature, and that repeated inoculations affect the
probability of any single pathogen initiating the
infection process.

The classic dose–response models used for microbial
risk assessment are the exponential and beta-Poisson
distributional models [1]. These models calculate the
risk of infection for a single-dose value. Parameters for
these models are empirically informed using animal
dosing experiments in which varying single-bolus
pathogen doses are given to animals, and infection or
disease is monitored [2,3]. In environmental infection
transmission systems where the environment is not
just a source but is a medium of pathogen transport
between individuals, these models are justified for the
extreme scenarios of very closely spaced or very dis-
tantly spaced exposures described above. In these
scenarios, the probability of infection can be calculated
independently for each dosing event. However, for other
exposure patterns, total within host pathogen level at a
given inoculation time is dependent on remaining
pathogen levels from past inoculations. In these cases,
the state of the system (i.e. the number of living patho-
gens and the number of immune elements available to
fight them) after any defined interval is dependent on
the clearance rate of pathogens and the destruction
and recruitment rate of standing immune elements.
Here, we define standing elements as those elements
existing or that would have appeared on their own in
the absence of new immune element generation owing
to an acquired immune response.

The exponential and beta-Poisson models make
implicit assumptions about how multiple pathogens
interact to cause infection. Under the independent
action hypothesis, any individual pathogen is capable
of initiating infection with some independent probability
[1]. The traditional dose–response models operate
under this paradigm. This hypothesis, however, is
generally considered only under single inoculation scen-
arios. We contend that, even though a single pathogen
is capable of initiating infection, the infectivity of a
pathogen may depend on the state of the immune
system, which in turn is affected by prior inoculations.
This is in contrast to the independent action hypothesis
that pathogen risk probability is independent of other
pathogens. It also deviates from a threshold model in
that the risk of infection given any inoculation size is
still never zero.

One aim for this model would be future integration
into transmission models. Particularly, in transmission
models, when we specifically consider pathogen
exposure from the environment, we must translate
an exposure event into a probability of infection. This
could be done using the exponential or beta-Poisson
models but these models potentially ignore exposure
J. R. Soc. Interface (2011)
dynamics associated with different routes of exposures,
as discussed in the exposure scenarios above. Although
a more biologically motivated dose–response model was
previously proposed [4], we present here a model that is
computationally less intensive and therefore more suit-
able for integration into a transmission model. In the
Pujol et al. [4] model, innate immune effector particles
and pathogens are modelled in a stochastic competition
model capturing both the growth of pathogens and
diminishing immune response. In our model, we aim
to capture these dynamics with a simple model that
does not explicitly model the immune dynamics. This
satisfies the goals of dose–response at the transmission
or population level by allowing utilization of an
exposure pattern (history of inoculations) into the cal-
culation of the probability of infection. Our model
provides a framework to realistically relax the assump-
tion of dose independence in a biologically plausible
yet computationally efficient manner that implicitly
incorporates the dynamics of the immune system. Fur-
thermore, we present a statistical method to analyse
such time-series data where infection events are occur-
ring amid inoculation events. Experimental data to
inform a time-dependent dose–response model are
extremely rare, but there are data from a 1966 study
on inhalation anthrax in monkeys that incorporates
varying exposure patterns and time to death data [5].
Even though this study was not specifically designed
to study varying risk by exposure patterns, our
analysis provides direction for more informative
future dose–response experiments that will incorporate
time-dependent dosing patterns.
2. METHODS

2.1. Overview of dose–response
model construction

The methods section will describe the construction of
our time-dependent dose–response model followed by
its application to time-series anthrax dose–response
data. The first three sections describe the development
of the model in a general framework focusing on the
clearance of pathogens within a host and the prob-
ability of infection take-off during the clearance time
frame. Section 2.1 mathematically describes the within
host pathogen level at any given time after a point
source inoculation and then §2.2 extrapolates this pro-
cess to multiple inoculations. Section 2.3 describes the
development of a hazard for infection at a given time
post-inoculation. At this point, enough information is
provided to use this time-dependent dose–response
model to make risk calculations given a parametriza-
tion. Particularly, it could be used in a transmission
model setting to translate. multiple exposure events
into an infection risk calculation. The last three sections
pertain to analysing data. Section 2.4 uses the hazard to
develop a likelihood statistic suitable for analysing time-
series dose–response data. To further analyse the data
we have, we must make further assumptions concerning
the data that are described in detail in §2.5. Section 2.6
describes our exploration of the results from §2.5 in
more controlled experimental settings.

http://rsif.royalsocietypublishing.org/
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2.2. Time-dependent pathogen clearance

Our model aims to describe the clearance of pathogen
until either the pathogen is eliminated or the pathogen
establishes infection. To capture the dose–timing
region between the extremes discussed above, a model
should reflect decreasing ability of the immune system
to inactivate pathogens as pathogens accumulate
and immune elements are consumed. The differential
equation in equation (2.1) illustrates such a model,
where t represents time and P(t) is a function represent-
ing the total within host pathogen level at a given
time. The parameter g roughly approximates a net
per-pathogen clearance rate. The pathogen clearance
rate is also affected by a shaping parameter, a, which
elicits different inoculation accumulation effects
depending on its value.

dP
dt
¼ �gPa: ð2:1Þ

To keep this model biologically plausible we consider
the domain of g to be in the interval (0, 1) and the
domain of a to be in the interval [0, 1]. When a ¼ 1,
g becomes the per capita rate of decay of within host
pathogen and the decay curve takes the exponential
shape. In this case, the pathogen’s die-out is a linear
function of the total number of pathogens P, i.e. the
immune system is equally effective in eliminating one
pathogen regardless of the current number of pathogens
in the system. The state of the immune system, there-
fore, is irrelevant since its efficacy to eliminate
pathogens is constant. When a is less than one, this
per capita change, g, is attenuated by the factor,
1/P12a. That is, the effectiveness of the immune
system is dependent on the total number of within
host pathogens. As a decreases and approaches zero,
the shape of decay becomes more linear and slower for
a fixed g. Therefore, the parameter a can also be bio-
logically described as the degree to which the immune
system can be overwhelmed by pathogen level. For a
single inoculation, the decay curve is illustrated in
figure 1. Given a total dose of 100 pathogens, the
curve represents the total within host pathogen level
at any given time over the course of clearance for
varying values of a over two fixed values of g.

By considering a negative differential equation, we
are modelling under the assumption that the total
within host pathogen level, or the infection hazard, is
strictly decreasing. Biologically, our assumption is
that after an inoculation, on average, the rate of patho-
gen reproduction is less than the rate of pathogen
clearance. If this inequality reverses, that is pathogen
reproduction becomes greater than pathogen clearance
on average, this would correspond to the pathogen
establishing infection. This assumption may not be suit-
able for all pathogens depending on biological traits,
particularly the pathogen’s ability to replicate within
our time scale of interest.
2.3. Dose clearance and multiple dosing

We propose to use this function to calculate an
effective dose for risk assessments when multiple
J. R. Soc. Interface (2011)
inoculations occur within a biologically relevant time
frame. To do this, we must first evaluate the solution
to equation (2.1) with initial condition given at time
0, d ¼ P(0), where d is a single inoculation given at
time 0.
Pðt; dÞ ¼
d � e�tg; a ¼ 1

ðtgða� 1Þ þ d1�aÞ
1

1�a; a [ ½0; 1Þ
0; te � t:

8<
: ð2:2Þ

To ensure that P(t, d) . 0, we implement the last
constraint in equation (2.2), where P(t, d) is absorbed
at 0 after te, the time of extinction for a given inocu-
lation. The closed-form solution for the time of
extinction for a single inoculation is given by equation
(2.3). Note that even though te is unbounded when
a ¼ 1, the dose function (an exponential decay func-
tion) takes on small values fairly quickly for a fixed g

as t increases, as illustrated in figure 1.
te ¼
d1�a

gð1� aÞ ; a , 1

1; a ¼ 1:

8<
: ð2:3Þ

In multiple exposure scenarios, the input doses for
this model are represented by a sequence of inoculations
such as those illustrated in the top two graphs in
figure 2. Each inoculation, di, is received instan-
taneously at a designated time, ti. Formally, we map a
one to one correspondence between a sequence of n
inoculations, dif gni¼1, and a sequence of n inoculation
times, tif gni¼1. In a study, we observe subjects in real
time (or close to) and record a corresponding final
observation time, T. This final observation time, T,
can occur in any interval between inoculations, ti �
T � tiþ1 or after the final inoculation time, tn , T.
Further, for a subject j, the total inoculations experi-
enced before an infection event or censoring may be
less than n, so we can denote the subject-specific
sequence size to be nj with corresponding final
observation time, Tj.

Now that multiple dosing situations have been intro-
duced, we can consider evaluation of equation (2.2) for
multiple inoculations. Since past inoculations may still
be present at the time of a new inoculation, the dose
function must incorporate the sequence of all past
inoculations up to time t. We can picture the multiple
dose time function as a series of decay curves with dis-
continuity jumps occurring at each inoculation point,
illustrated in the bottom two graphs of figure 2. Par-
ticularly, the total within host pathogen level at any
inoculation time, ti, is the sum of the current inocu-
lation, di, and the remaining within host pathogens pi.
The remaining pathogen level is described in equation
(2.4) recursively using equation (2.2). When a ¼ 1,
the remaining pathogen level can be defined as an inde-
pendent accumulation of previous inoculations, this is

http://rsif.royalsocietypublishing.org/
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derived in the online materials.

pi ¼

0; i ¼ 1
Pðti � ti�1; pi�1 þ di�1Þ; i . 1

Pi�1

j¼1
dje�gðti�tj Þ; i . 1 > a ¼ 1:

8>><
>>:

ð2:4Þ

Since equation (2.4) describes the points of disconti-
nuity at inoculation times, we can use it to reconstruct
equation (2.2) to use multiple dose arguments. The
following function is the multiple dose function.

Pðt; dif gki¼1Þ ¼
pk þ dk ; t ¼ tk

Pðt � tk ; pk þ dkÞ; tk � t � tkþ1:

�

ð2:5Þ

This function can be interpreted as the total within
the host pathogen level at a given time, t, given all
past inoculation up to that time. The function is
jump-discontinuous in that it decreases and is absorbed
at 0 (by construction in equation (2.2)) but has point
increases at inoculation times, ti by an inoculation
value, di. Note that, given a time sufficiently greater
than the time of the last inoculation, this equation
approaches 0 under the same conditions as equation
(2.2). The time to extinction, te, after inoculation time
ti, can still be calculated using equation (2.3) but with
input dose, pi þ di, instead of di. When a ¼ 1, the func-
tion approaches zero quickly with decreasing error
as t� tk since the true convergence time is in the
limit, t!1, discussed in detail in the online electronic
supplementary material.
2.4. Dose–response risk from multiple
dose function

We consider an effective dose to be any value calculated
from equation (2.5) that could contribute to an infec-
tion hazard at any given time. To evaluate the
accumulated effective dose in a given host, we integrate
equation (2.5) over a time period of interest. For a single
J. R. Soc. Interface (2011)
inoculation, the closed-form solution for the effective
dose from inoculation to extinction is.

ðte

0
Pðt; dÞdt ¼ d2�a

gð2� aÞ: ð2:6Þ

When there are multiple inoculations, the accumu-
lated effective dose is a sum of integrals over the
continuous sections of the multiple dose function.
This is seen in equation (2.7), for any time, T, before
the final within host pathogen extinction. If T ¼ tk, or
the upper bound of the integral is equivalent to an
inoculation time, the last term of equation (2.7) is zero.

ðT

0
Pðt; dif gki¼1Þdt ¼

Xk�1

i¼1

ðtiþ1�ti

0
Pðt; pi þ diÞdt

� �

þ
ððT�tkÞ

0
Pðt; pk þ dkÞdt: ð2:7Þ

To evaluate the accumulated effective dose through
final pathogen extinction, we simply replace the
final term of equation (2.7) with equation (2.6) with
pn þ dn (the initial pathogen level at the final inoculation)
substituted for d. For a¼ 1 and T� tn, we can still sub-
stitute in equation (2.6) with small error, this is discussed
in greater detail in the electronic supplementary material.

To consider how a determines the importance of
dose–timing, consider an entire dose course over an
exposure pattern, for example, the top two graphs in
figure 2, where we have two distinct exposure patterns
of 40 pathogens given over 200 min. The accumulated
effective dose over this time can be calculated using
the integral given in equation (2.7). When a ¼ 1, the
accumulation of inoculations is an independent process,
as illustrated in equation (2.4) owing to the exponential
memoryless property. Because of this property, the total
effective dose over the exposure period is the sum of the
inoculations divided by g. This solution holds for all
potential dosing patterns evaluated through effective
extinction (T� tn) when a ¼ 1, discussed further in
the online electronic supplementary material.

http://rsif.royalsocietypublishing.org/
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four inoculation events persist longer in the immune system. (Online version in colour.)

510 Dynamic dose–response modelling B. T. Mayer et al.

 on January 2, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
When a , 1, however, the pathogen clearance rate
depends on the within host pathogen level. Under
these conditions, the total effective dose is dependent
on the timing of given inoculations. For a ¼ 0.5, the
accumulated effective dose (the area under the curve)
differs across dosing patterns despite the sums of the
inoculations both totalling 40 pathogens (see the
bottom two graphs of figure 2). Although the total
inoculated dose (40 pathogens) and the time of
exposure (200 min) are the same, it is visually evident
that pathogens from the four inoculation events
persist longer.

The goal of our model is to analyse decaying hazard
post inoculation, until either the pathogen is cleared or
the pathogen takes hold and initiates infection prior to
clearance. We now introduce the risk of infection owing
to a single pathogen per unit time that is present in the
immune system s. This formulation is a one-hit model of
infection; i.e. a single pathogen unit is capable of initi-
ating infection. This phenomenon has been shown
empirically for pathogens such as influenza A [6] and
intravenous Salmonella exposure [7]. However, unlike
the exponential formulation of a one-hit model, each
hit does not have identical and independent risk.
Instead, risks are dependent upon prior hits and thus
a and g also contribute to the calculation of the risk.

For an instantaneous risk associated to a single
pathogen, s, and the current number of pathogens
within the host, P, we can calculate the force of infec-
tion, i.e. the probability of a susceptible individuals
becoming infected, sP(t)dt. This is evaluated at each
time step. For multiple inoculations, we insert our mul-
tiple dose function. We can interpret this as a hazard
function, l(T ), given in equation (2.8).

lðTÞdt ¼ sPðT ; dif gki¼1Þdt: ð2:8Þ

By integrating and exponentiating the hazard over
an interval time up to time, T, we can calculate the
J. R. Soc. Interface (2011)
survival function, or the probability of not being
infected by time, T, given as follows.

SðTÞ ¼ e�s
Ð T

0
Pðt; dif gki¼1Þdt ¼ 1� PrinfectionðTÞ: ð2:9Þ

We now have a corresponding risk of 1 2 S(T ),
which matches the familiar functional form of the expo-
nential dose–response model. If we consider T � tn,
then this risk corresponds to the risk of an entire
exposure pattern. When a ¼ 1 and there is a single
inoculation event and clearance, the single pathogen
risk parameter, k, from the exponential model is equiv-
alent to the ratio s/g. Furthermore, continuing to
assume complete pathogen clearance, this equivalence
holds for all exposure patterns when a ¼ 1. This
relationship is lost when a , 1 as pathogen clearance,
and thus risk, becomes dependent on the size and
timing of inoculations. That is, when a , 1, the equiv-
alence of the exponential function and our cumulative
dose risk function is dependent on the inoculation
size. Mathematical explorations of the relationship
between the exponential model and our model
when a ¼ 1 are discussed in the online electronic
supplementary material.
2.5. Likelihood statistic and parameter
estimation from data

By multiplying the hazard and the survival function we
can calculate the probability density for infection at a
final observation time, T, standard in a survival analy-
sis. This is given in equation (2.10).

f ðTÞ ¼ SðTÞlðTÞ: ð2:10Þ

To estimate the model parameters using time-depen-
dent exposure data including time of infection, we
propose a likelihood statistic derived from survival
analysis framework. The likelihood is formulated
depending on a subject j’s infection status given

http://rsif.royalsocietypublishing.org/
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by Dj. This is illustrated in equation (2.11) where we
consider each subject to be independent. If Dj ¼ 1
(infection occurs), then the likelihood is calculated
from the probability of infection at time, Tj, given by
the density function f(Tj). If Dj ¼ 0 (no infection or cen-
soring), then the likelihood is calculated from the
probability of survival up to time, Tj. To estimate par-
ameters, we propose a maximum-likelihood approach,
that is, we find the best parameter values that maximize
the likelihood values.Y

j

LðTjÞ ¼
Y

j

SðTjÞ1�Dj f ðTjÞDj : ð2:11Þ

By taking the negative log of the likelihood and substi-
tuting in equation (2.10), we simplify equation (2.11) to
equation (2.12).

�
X

j

logLðTjÞ¼
X

j

s
ðTj

0
Pðt; dif gnj

i¼1Þdt�Dj loglðTjÞ:

ð2:12Þ

When evaluating time-dependent dose–response
data, finding exact times of infection will generally be
difficult if not impossible. We may know a time interval
in which the process of infection began but not an exact
time. For these scenarios we can adjust the likelihood
formulation such that interval censoring can be incor-
porated. This adjustment is discussed in detail in the
online electronic supplementary material.
2.6. Case study: inhalational anthrax data

Inhalation anthrax mortality data in monkeys were
published by Brachman et al. [5] from an observational
animal study conducted in a wool sorting mill in
South Carolina in 1966 [5]. Cynomogus monkeys were
placed in a laboratory trailer and air was ventilated
into the trailer from the wool sorting mill. Air was
periodically sampled to measure the anthrax concen-
tration. A daily inhaled dose was estimated using
these data and an estimated monkey respiration rate.
We considered these inhaled spores as pathogens
capable of initiating infection.

The experiment was conducted during five distinct
time intervals and three of these were reported.
During the third and fourth runs, the monkeys were
continuously exposed to contaminated air during work-
ing hours. Air was intermittently sampled daily. These
were the only two runs we were able to use to evaluate
our model. As air was ventilated in from the wool sort-
ing mill, exposure was based on the natural
concentrations in the mill and therefore was not con-
trolled by the researchers. For our purposes, dose
levels were estimated from figures provided in the
paper in which a single total daily exposure was
recorded. We assumed that on days when exposures
were recorded that single equivalent sized inoculation
occurred at the beginning of each hour for the entire
day. Monkeys’ health was monitored over the exposure
period and for a brief time after the terminal exposure.
The experimenters checked in on the monkeys three
J. R. Soc. Interface (2011)
times per day. Autopsies were conducted immediately
after a death was discovered. Deaths owing to non-
anthrax causes also occurred and were recorded. All
monkeys were sacrificed shortly after the exposure
period to determine the anthrax infection status.

During the third run, 32 monkeys were exposed for
47 days during which time 10 deaths owing to anthrax
infection were recorded. On the 50th day, all the
remaining live monkeys were sacrificed. At this time,
two more monkeys were found to be infected bringing
the infection total to 12 with observed risk to be 44
per cent. During the fourth run, 31 monkeys were
exposed for 41 days during which time 10 deaths
owing to anthrax infection were recorded. The remain-
ing live monkeys were sacrificed on the 51st day. No
additional monkeys were found to be infected and the
observed risk was thus 23 per cent. Figure 3 is a
graphical depiction of these data.

By the end of the study, monkeys had become
infected, died of other causes, or survived (did not
become infected) over the duration of exposure. Sur-
vived subjects were sacrificed several days after the
final inoculation, which technically elicits a right cen-
soring. We assume that autopsies that were negative
for anthrax are conclusive in that subjects would
never have become infected. That is, we assume all
non-infected sacrificed monkeys survived the entire
dose course. We also assume that anthrax has a case-
fatality rate of 100 per cent in monkeys (i.e. no
monkey survived infection). A small set of subjects in
these data died of causes not related to anthrax. We
assume these censored subjects died from reasons that
were completely random and unrelated to anthrax
exposure and therefore evaluate their survival up to
their final observed time, Tj. For subjects that were
infected, only day of death was observed.

Since we were interested only in time to infection
take-off, we considered a fixed population lag period,
t, which is the time between infection take-off (when
the course of ongoing infection is assured to be progress-
ive) and time of death. Given the observed time of
death, Tj, the predicted time to infection is Tj 2 t.
We do not aim to dynamically model any processes
during the lag time, t, and thus treated it as a constant
parameter. A previous study [8] showed that time
between symptoms and death is on the scale of several
hours for Cynomologus monkeys so we do not
think symptom onset would aid in finding the total
lag period.

This lag period, t, was treated as a population
parameter but it is probably individually probabilistic
in nature. Based on the Vasconcelos study [8] that
this lag is variable, a variety of t values were initially
implemented. However, the Vasconcelos experiments
used significantly higher dosing in bolus (the ID50)
and potentially a different strain of the Bacillus
anthracis, and therefore lag times may not be
comparable. Further, an experiment on several other
pathogens showed relatively invariant latency periods
for inoculations less than the ID50 [9].

To come up with a lag time estimates, we considered
a previous study [10] that used lag time distributions
with median lag times of 1–3 days. However, their lag
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period described the period from spore germination to
symptoms. Anthrax infection occurs after germination
in macrophages [11,12]. The biology and persistence
of spores from time of exposure to infection is not
well understood, but elimination of spores is mediated
by epithelial cells and macrophages [13]. While epi-
thelial cells are capable of eliminating anthrax spores
alone [13], spores are also readily phagocytized by
alveolar macrophages where they germinate. While,
the macrophage is capable of eliminating the bacillus,
B. anthracis toxins and defence mechanisms inhibit
this ability as it attempts to use the macrophage to
reach the regional lymph system where it can initiate
infection as an extracellular pathogen [11]. This process
implies that germination is an important step in the
infection process but that it occurs before infection
takes off. We therefore expect the lag period described
in our model to be less than that described in
Brookmeyer et al. [10] and used a period from 1 to
4 days. Treating t as a nuisance parameter, we fixed
it to a discrete uniform distribution; it was then
integrated out of the likelihood using conditional expec-
tation. Further discussion can be found in the online
electronic supplementary material.

Model fitting was done by profiling over a while
optimizing the parameters s and g (in unit per hours)
to minimize the negative log likelihood based on
the Brachman experimental data for run 3 and run 4.
By profiling over a fixed a, we are also analysing
these data under different assumptions concerning
accumulation of doses in terms of differing dose–
timing. Inference was done by fitting a spline curve
J. R. Soc. Interface (2011)
through the values of the negative log likelihood
for each a value creating a smooth depiction of the
log likelihood space. Using the minimum value of the
spline (the overall maximum likelihood estimate
(MLE) fit), we defined a critical cut-off using the
likelihood ratio test [14]. That is, at the 95 per cent
significance level, the confidence interval of a falls
in the range of the minimum log likelihood+ 1

2 �
x2(0.95,d.f. ¼ 1).

To evaluate consistency of our model with some past
anthrax models, we calculated risks over a range of
single dose values. This can be done for a ¼ 1, reducing
our model to an exponential model, in which the expo-
nential risk parameter k is equivalent to the ratio of s
over g. For parameterizations involving a , 1 in
which dose–timing patterns impact risk and the expo-
nential model is no longer valid, our model is only
comparable to past models under single inoculation
scenarios. Risks for range of single dose values were
calculated using equations (2.6) and (2.9).

Integrals were estimated using the adaptive Simpson
quadrature method in Matlab. Optimization was done
using minimax search algorithm in Matlab. Spline fitting
was done using the default spline function in Matlab.
2.7. Dosing experiment design

To explore the model’s ability to discern between differ-
ent exposure patterns and to illustrate the results from
the Brachman data optimization, exposure patterns
were created representing two extremes; one large
bolus and one evenly distributed set of smaller
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inoculations given once daily over 15 days. The sum of
the inoculations is equivalent for both patterns at a
value of 15 000 as it corresponds to the sum of the
total dose in run 3. Using the parameter MLEs from
the model, risks were calculated for each dosing pattern
for a fixed a and corresponding MLE g and s values.
The varying values of a illustrate potential expected
results from an animal experiment that incorporated
dose–timing.
3. RESULTS

Figure 4 shows the results of the optimization profile
over a using data from the Brachman inhalational
anthrax study runs 3 and 4. The likelihood space is a
fairly smooth decreasing curve in the optimized log like-
lihood space over a as seen in figure 4a. A smoothed
spline was fit through the points and the 95 per cent
J. R. Soc. Interface (2011)
lower limit was connected to the upper boundary of a
by a horizontal line. The optimal parameter fit occurred
when a ¼ 0.90 with respective MLE values for s and g

at 1.81 � 1027 h21 and 0.0097 h21. For these overall
MLE fits, the predicted risk for run 3 and run 4 is 50
and 16 per cent when compared with the observed
attack rates of 44 and 23 per cent, respectively. The
95 per cent CI for a was (0.51, 1) where 1 is a bound
owing to our imposed constraints on values of a. It is
mathematically and statistically possible to extend a

beyond our imposed upper limit constraint but the bio-
logical interpretation of our model becomes less
intuitive. For a . 1, bolus exposures patterns have
lower risks than evenly distributed exposure patterns
when total dose is fixed. Results for a . 1 are discussed
in the online electronic supplementary material.

Plotting of the MLE s and g values over the signifi-
cant region of a can be seen in figure 4b,c. The MLE
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Figure 5. Comparison of our best-fit results with other
anthrax models when modelling risk for a single bolus dose.
To calculate this risk when a ¼ 0.9, equations (2.6) and
(2.9) were used in combination with MLE values, s ¼ 1.81 �
1027 h21 and g ¼ 0.001 h21. When a ¼ 1, our model is equiv-
alent to an exponential model with k ¼ s/g ¼ 3.57 � 1025.
Previous exponential modelling of Brachman data assuming
each day as an independent dosing event yielded k ¼ 2.4 �
1025 [15]. A model of anthrax outbreak in Rhesus monkeys
which included clearance rate and hazard rate yielded an
attack rate formula equivalent to an exponential model with
k ¼ 7.17 � 1025 [10]. Thick line, Brachman results â ¼ 0:9;
dashed line, Brachman results a ¼ 1; dash-dotted line,
Brachman results [15]; dotted line, Brookmeyer et al. [10].
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values of g are log linearly correlated with a. Recall that
the shape and the rate of within host pathogen decay
depends on both these parameters and, therefore, this
relationship is not unexpected as the optimization is
trying to find a relatively stable clearance curve
and there are probably many sets of a and g that
could elicit such a curve. When given multiple exposure
patterns of the same total dose, we would expect a par-
ameter to determine the importance of dose–timing
effects, i.e. whether the risk will differ between these
exposure patterns. Therefore, without data containing
more exposure patterns, it is difficult to independently
estimate both a and g. The MLE values of s are
relatively insensitive for changing values of a. The
data thus provide us with a consistent estimate of the
instantaneous per pathogen infectivity parameter, s,
for a given clearance pattern.

The attack rates for varying single doses were calcu-
lated using our MLE parameterization and equations
(2.6) and (2.9). We compare our MLE results to
another parameterization of our model and two pre-
viously analysed anthrax dose–response models by
creating a risk curve over a large range of bolus dose
values, all illustrated in figure 5. We consider results
for a ¼ 1, equating this parameterization of our model
to the exponential model where k ¼ s/g ¼ 3.95� 1025.
The other two models were a previous analysis of the
Brachman data assuming each day was an independent
trial using an exponential dose–response model [15]
and a separate analysis of anthrax infection in Rhesus
monkeys, specifically developed to model anthrax
clearance rates [10]. This model is similar to our
J. R. Soc. Interface (2011)
model when a ¼ 1, and produced a clearance rate and
hazard rate of 0.0029 h21 and 2.08 � 1027 h21.

Next, we calculated the corresponding risks for the
exposure patterns given in §2.6. We chose the corre-
sponding MLE parameter sets for several a values
ranging from 0.5 to 1. Figure 4d depicts the predicted
risks over this a range, comparing the bolus exposure
to the evenly distributed exposure pattern. We can
see that as a approaches 1, the gap between the pre-
dicted risks decreases. The largest gap presented
occurs at a ¼ 0.5 where the bolus exposure has a risk
of 64 per cent and the distributed exposure has a risk
of 59 per cent. When a ¼ 0.9, the bolus risk is 47 per
cent and the distributed exposure has a risk of 46 per
cent indicating dose–timing effects that are small.
4. DISCUSSION

4.1. Plausibility of our model as a
dose–response model

Using a simple function that expresses cumulative dose
dependence on the pathogen elimination rate, we are
able to realistically relax the assumption that the risk
of each pathogen dose is independent of the time of arri-
val of other pathogen doses. Further, through a survival
analysis, we have presented a method for analysing
dose–response time-series data of exposure and infec-
tion events. As a case study, we presented an analysis
of inhalational anthrax infection in Cynomologus
monkeys in an industrial setting [5]. Our optimization
found the best-fitting parameters for these data as fol-
lows: a ¼ 0.9, g ¼ 0.0097 h21, and s ¼ 1.81 � 1027 h21.
This result indicates that there are very slight dose–
timing effects, as indicated by the risk difference of 1
per cent from the simulated exposure experiments.
This result also appears dependent on our lag
time assumptions. The problem of non-identifiability
between our clearance rate (g) and lag period (t)
requires us to make some assumptions about the overall
distribution of the lag period, a problem also found in a
previous anthrax analysis [10], where they optimized a
convolution of a time to germination likelihood and
an exponential lag period. Our lag period describes a
period beginning with infection take-off, which occurs
sometime after germination within macrophages [11],
and ending in death. The point at which infection has
taken off is not provided in the Brachman experiment
and thus we must rely on an assumed lag period. To
test the sensitivity to lag period assumptions, we tried
other distributions, such a larger range of lag period
and a truncated exponential. If all times were weighted
equally or if there were heavier weighting on longer lag
periods (greater than 6 days), the MLE a was estimated
at 1. However, a distribution that weights faster lag
periods more (such as the exponential with mean of
about 2 days) resulted in MLE a values between 0.9
and 1. While lag periods may be less variable and
slower for doses under the ID50 [9], such as in this data-
set, future anthrax modelling for larger doses may
require careful distribution selection consistent with
experiments done with higher dose levels [8]. The
fitted values of s and g decrease slightly as the lag
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period decreases. This result implies that our estimate
of within host pathogen persistence and risk depends
on our lag period selection and therefore we may be
incorrectly classifying periods where dose–timing is
important as the lag period.

Although our model is unique in its implementation
of multiple doses, we can compare it to other dose–
response models when considering the risk from a
single dose. As illustrated in figure 5, our model pro-
duced consistent results with other anthrax models.
Particularly, the ID50 of all these models are all within
an order of magnitude. A review of several anthrax
dose–response models [16] found that risk models that
were similar to exponential distributions were the most
successful at modelling anthrax risk. Our analysis is
consistent with this result. To truly check consistency
among other analyses, however, requires more data and
models implementing multiple dosing.

Our 95 per cent CI of (0.51, 1) reflects imprecision in
estimation of a values. Our confidence interval calcu-
lation is limited in this example as we implemented an
artificial upper bound on a that is biological instead
of statistical. If we allow a values greater than 1, we
find this interval to extend as far as 1.48, as discussed
in the online electronic supplementary material. If
a . 1, we would have a paradigm where bolus
exposures have lower risks than smaller, distributed
exposures of the same total dose.

The strong functional relationship of a and g implies
that they should not be estimated independently.
Particularly, they share a decreasing log linear relation-
ship (figure 4c) showing that g values decrease when a

values increase. That is, when clearance decreases in
speed, the shape of the clearance curve becomes more
curvilinear. This illustrates a range of potential clear-
ance curves that describe the pathogen decay. The s
parameter then provides us with an instantaneous per
pathogen infection risk over the clearance time. When
estimating the parameters for our model, we suggest
a profile optimization over a. Using this approach,
inference can then be done to determine if a differs
from 1, which would imply that risk estimation depends
on dose–timing. When using the model to estimate
exposure risks or infection timing, we assign the
appropriately fitted g value to a specified a value.

One limitation of our model owing to its simplicity is
the use of abstract parameters. The a and s parameters
are not readily biologically interpretable from the
results and the parameter g is only interpretable
in the special case of exponential clearance. We can
still present expected clearance curves and describe
expected behaviour of the system with known par-
ameters. For example, if we know we do not have
exponential clearance (a , 1), then bolus exposures
correspond to the highest risk of infection. However,
given two different pathogens with this property (a , 1)
but different a values, it is not clear what the differing
values of a tell us specifically about each pathogen,
especially if the other parameters vary also. Further-
more, extrapolating our results to human populations
requires additional assumptions. For traditional dose–
response experiments, we would need susceptibility of
the host animal to be similar to humans. Additionally,
J. R. Soc. Interface (2011)
for our model, we would also need the surrogate’s
immune response to occur at a similar rate with similar
effectiveness to the human population. Cynomolgus
monkeys and humans have similar anthrax infection
pathology [8], which implies that we may expect the
dynamics and risk assessments to be similar given
these exposure patterns, however, it is not clear how
the parameter sets might differ.

Another limitation of our model is that it does not
take into account the reproduction of pathogens
within host tissue, i.e. we only model pathogen
clearance as a decreasing curve between inoculations.
Ideally, a model of the infection process includes
pathogen elimination by the immune system and the
growth of the pathogen within the host. The persistence
of pathogen would then be more realistically described
as a stochastic process, with spikes both increasing
and decreasing over clearance until either the pathogen
level reaches zero or begins to reproduce to an
unbounded level, as presented in a previous model [4].
This model, however, requires additional parameters
and is computationally intensive that makes its
implementation into complex models of environmental
infection transmission systems difficult. By ignoring
pathogen growth during innate clearance but before
the infection takes off, the overall shape of pathogen
decrease described by our model will be different than
the more realistic model that takes into account both
processes. However, by relaxing the assumption that
infection risk must be time-independent, our model is
a step forward in dose–response risk assessment.
4.2. Experiments to inform time-dependent
dose–response models

Our proposed exposure patterns illustrate simple
experimental structures that would elicit varying risk
owing to dose–timing effects. It is important to note
that our model is only one potential realization of
time-dependence in dose–response models. Conducting
the proposed experiments and observing a significant
risk difference between exposure patterns might be
enough to imply that risk depends on dose–timing.
This discovery alone would illustrate how charac-
terizing the risk of different routes of transmission
is critical, and further, would have important
ramifications on intervention policies.

To conduct such a time-dependent dose–response
experiment, preliminary experiments would need to be
conducted to find a viable dose; that is, doses that do
not have risks near 0 or 100 per cent. Further, these pre-
liminary experiments need to give insight into the time
scale of interest. We used doses spaced by days since our
results pointed to clearance rates on the scale of days.
For a pathogen like the influenza virus, we may
expect dose–timing effects to be on a shorter time
scale. After preliminary experiments, dosing schemes
similar to our proposed patterns should be implemented
with fixed total doses. By using exposure patterns that
differ so widely, we are better able to evaluate the
impact of dose–timing on the effectiveness of the
immune system. Simply observing varying risk by
exposure pattern can provide enough insight to imply
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that risk depends on dose–timing. Simple analysis on
differing risks would be sufficient to show dose–
timing effects. One shortfall of these experiments is
that they would probably require large subject sizes
unless there are substantial dose–timing effects. If we
look at the predicted risks of our exposure patterns
from our analysis when a ¼ 0.5, we would need 1550
subjects per pattern to find a statistically significant
difference at the 0.05 level with 80 per cent power
using Fisher’s two-sided exact test. Naturally, if there
are stronger dose–timing effects (risks differences are
much higher), the necessary sample size drops. Other
options would include designing experiments that are
mechanistically specific to the pathogens of interest
and monitoring the corresponding immune response.
For anthrax, we may design an experiment monitoring
macrophage loads over different dosing patterns and
then analysing the data with an anthrax-specific
mechanistic model. This scenario would reduce the
emphasis on elucidating risk differences and therefore
may not require such large sample sizes.

By using a sufficient amount of subjects, the time to
infection distribution and overall risk would be stabil-
ized for each dosing course and thus provide stable
data to estimate our parameters. Further, using varying
total doses is an additional method to introduce pre-
cision to parameter estimation in our model. There
were many limitations in using the Brachman data to
estimate our model parameters. The data had small
sample size and only two exposure patterns. Further-
more, the exposure patterns are roughly similar for
each run and the total doses differ. The estimation of
a depends on the effect of dose–timing and thus
would be best estimated by widely varying exposure
patterns of the fixed total dose.
4.3. Time-dependence in the dose–response
model paradigm

Through the use of our model, we have shown that
exposure timing can be used in the calculation of risk
and estimation of infection times. This is a distinct
advantage over the risk calculation of classical dose–
response models. In transmission systems, different
routes of transmission lead to varying types of exposure
patterns. We can now relax the assumption that the
risk is invariant to different dose–timing and thus vary-
ing exposure patterns. Even if our model predicts
invariant risks to exposure patterns (exponential clear-
ance), it allows us to estimate when infections would
occur over an exposure course.

Fundamentally, we are interested in whether dose–
timing is an important factor in the calculation of
risk. Our analysis shows that for anthrax, there may
not be these effects on the time scale we examined,
i.e. the accumulation of inoculations is an independent
process with respect to immune clearance when time
intervals are 1 day at the minimum. There might be
such time dependence across shorter times.

Despite these findings, we still provide a reasonable
estimate for the persistence of the pathogen in the
host on the scale of days. We expect that the impor-
tance of dose–timing would be dependent on the
J. R. Soc. Interface (2011)
infection process of a given pathogen. For other patho-
gens, such as non-respiratory bacteria or viruses, we
may not expect these properties to remain constant,
especially if the immune mechanisms of clearance
differ biologically. For example, the B. anthracis bacil-
lus uses macrophages as a transport to the lymph
system in the course of the infection process [12]. This
is a unique mode of infection that affects
both immune effectiveness and clearance time scale
that differs from infection processes of many other
pathogens, e.g. the influenza virus.

Infectious disease transmission systems are time-
dependent processes generally involving many different
types of environmental exposure routes. In influenza
transmission, the virus can be transmitted in the air,
through direct contact, and through fomite surfaces
[17]. In anthrax bioterrorism scenarios, we may wish
to consider the risks of large release versus a small
steady release of spores. For an enteric disease, like
cholera, norovirus or pathogenic Escherichia coli, com-
peting routes such as contaminated food or water
contribute to varying exposure patterns. Each of these
transmission routes could be characterized by distinct
exposure patterns such as evenly distributed, small
exposures (e.g. breathing dispersed pathogen in air) or
a large bolus exposure (e.g. consuming a contaminated
glass of water). Modelling these routes requires many
assumptions, particularly when time-independent
dose–response models are implemented to give a risk
calculation for a given exposure pattern. If exposures
occur in a time frame in which the immune system
has begun to respond but has not cleared the pathogen,
we may no longer have independent pathogen risk
calculations. In this scenario, distinct exposure routes
may elicit differing risk properties. To see these
properties, dose–timing effects must be considered in
dose–response experiments, such as we suggest, eluci-
dating the time scale of clearance and the potential
importance to risk calculations. We aim to develop a
dose–response paradigm that readily includes time-
dependence in both risk and infection time calculations.
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