Consistent design schematics for biological systems: standardization of representation in biological engineering

Yukiko Matsuoka1,2,*, Samik Ghosh1 and Hiroaki Kitano1,3,4

1 The Systems Biology Institute, 4-01 Shillman Hall, 3-14-9 Ohkubo, Shinjuku, Tokyo 169-0072, Japan
2 ERATO Kawaoka Infection-induced Host Responses Project, Japan Science and Technology Agency, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
3 Sony Computer Science Laboratories, Inc., 3-14-13 Higashi-Gotanda, Shinagawa, Tokyo 141-0022, Japan
4 Okinawa Institute of Science and Technology, 7542 Onna, Onna-Son, Kunigami, Okinawa 904-0411, Japan

The discovery by design paradigm driving research in synthetic biology entails the engineering of de novo biological constructs with well-characterized input–output behaviours and interfaces. The construction of biological circuits requires iterative phases of design, simulation and assembly, leading to the fabrication of a biological device. In order to represent engineered models in a consistent visual format and further simulating them in silico, standardization of representation and model formalism is imperative. In this article, we review different efforts for standardization, particularly standards for graphical visualization and simulation/annotation schemata adopted in systems biology. We identify the importance of integrating the different standardization efforts and provide insights into potential avenues for developing a common framework for model visualization, simulation and sharing across various tools. We envision that such a synergistic approach would lead to the development of global, standardized schemata in biology, empowering deeper understanding of molecular mechanisms as well as engineering of novel biological systems.

Keywords: systems biology; standardization; biological engineering; graphical notation

1. INTRODUCTION: SYNTHETIC BIOLOGY AND SYSTEMS BIOLOGY

Synthetic biology aims at designing artificial genetic circuits for specific functions. It may take the form of the bottom-up design and construction paradigm as elucidated by Isaacs et al. (2003), Stricker et al. (2008), Gardner et al. (2000), Hasty et al. (2002), Guido et al. (2006), Deans et al. (2007), etc., or engineering of existing genomes to fit specific purposes (Itaya et al. 2005). In the bottom-up approach, it is essential that genetic circuits be designed and proved to be functional before being actually implemented on biological materials, in the same way as electric circuits, robotics systems and aircraft are designed and built. Therefore, it is imperative to develop a series of industrial-strength software platforms that enable such design processes.

At the same time, a hallmark of matured engineering fields is the development and maintenance of standards and modularized components that can be re-used and cross applied for various circuits. Such components are openly publicized and exchanged in the market. It is often the case that software components are shared in the community as open source software or at low cost as shareware.

An interesting attempt to foster development of technologies and the science behind them is to create competition in organized or emergent form. RoboCup (Kitano et al. 1997), for example, is an organized effort to foster competition and collaboration to speed up the
development of artificial intelligence (AI) and robotics, which can be used in the real world. It sets the goal: ‘By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team’ and organizes annual competitions to benchmark technologies and exchange them for further progress (Kitano et al. 1997). This project has had a dramatic impact on the AI and robotics communities in accelerating research, and some of the research results have been quickly transferred into industry.

In the synthetic biology area where the goal is to design and construct novel biological circuits by combining basic building blocks, the process of developing standardized and well-characterized components has been a dominant paradigm. Unambiguous characterization of biological parts (Peccei et al. 2008) as well as standardization of parts assembly and design processes are significant challenges in efforts to streamline the fabrication of biological circuits. Community efforts in this direction have been undertaken through the BioBricks Foundation (http://bbf.openwetware.org/) and OpenWetWare initiative (http://openwetware.org/). Community-wide adoption of the standards has been fostered through the International Genetically Engineered Machines competition, iGEM (Brown 2007), a competition and collaboration forum to foster development of synthetic biology. Such efforts shall pave the way for enhancing research and education in this discipline.

Clear characterization of biological parts and establishment of standards for deriving kinetic models of parts and devices are some of the key challenges in the synthetic biology community. At the same time, it would be required to endorse standards for the description of biological modules and circuit components, as initiated in systems biology (Hucka et al. 2003; Le Novère et al. 2008), for initiatives like iGEM to have wider impact on dissemination of design knowledge and adoption of consistent schematics. Efforts in this direction have been initiated through the Provisional BioBrick Language (POBOL, http://pobol.org/), which aims to define a data exchange standard for standard biological parts.

Development of consistent, standardized schemata for the representation of biological parts is an important direction of research, particularly as the field matures. Here we introduce the various standardization activities in the systems biology community for consistent schematic representations and discuss the possible scope for mutual deployment of standards and technologies in the synthetic biology area. It should be noted here that there are possibly other up-front issues that the synthetic biology community needs to address today, rather than worrying about standardization of representation. However, the point we wish to address here is a potential future need to develop standard descriptions when the field matures enough and discuss some of the current efforts and possible future directions.

2. SCOPE OF MODELLING AND SIMULATION IN DESIGNING BIOLOGICAL CIRCUITS

Modelling and simulation are indispensable tools in all engineering designs and have been successfully applied in the automobile, aerospace and telecommunication industries for many decades. Computational fluid dynamics (CFD), for example, is an essential design process in aircraft, ship and automobile design. Any high-rise building has to undergo a series of structural integrity simulations even to be approved for construction; chipmakers model, modify and simulate their designs on computers before sending them to the fabrication plants; ‘virtual cars’ are driven and ‘virtual aircraft’ flown under simulated conditions before hitting the manufacturing floor (The Economist 2005). In the field of sciences, modelling is a practice of quantitative hypothesis testing, which enables researchers to test and prove the scientific hypotheses. Models capture and communicate knowledge and theories in a concrete form that can be simulated before building prototypes.

Systematic modelling and simulation of prototypes have been notable features in all engineering design problems. However, their adoption in the biological sciences has been traditionally sparse. In recent years, the role of in silico modelling and simulation in understanding biological systems at a ‘systems level’ has gained traction in both academic and pharmaceutical research communities (British Telecommunications 2007; PricewaterhouseCoopers 2008). Various flavours of simulation techniques have been applied in understanding systems behaviour of biological processes at multiple scales (Ramsey et al. 2005; Hoops et al. 2006), from molecular maps of cellular pathways, to tissues and organs, to the simulation of drug regimens in virtual patient populations (Rullmann et al. 2005).

While systems biology emphasizes application of computational techniques for obtaining insights into the mechanism of various biological processes, synthetic biology endeavours to develop de novo biological circuits to engineer the behaviour of living systems. In this perspective, modular model development and simulation-driven validation of prototypes form the cornerstones of this discipline. In order to develop engineered biological circuits, like synthetic gene regulatory circuits, a computational platform comprising tools for designing, simulating and assembling biological circuits from existing parts would be required. A typical workflow for engineering a de novo biological circuitry can be envisaged as follows.

(i) Design of the proposed biological circuitry. The design would be at an abstract level of view, using graphical representation of different fundamental entities and standard format for storage, retrieval and exchange of the design.

(ii) Simulation of biological circuit design. The simulation tools would allow the designer to test the response of the biological circuit under different conditions of input (environmental signals etc.), explore the parameter space of different components to quantify biological robustness of the design and test various hypotheses.

(iii) Assembly of biological circuit. Once the design and simulation phases, working in multiple iterations, have confirmed the desired performance of the biological circuit, biological components would be accessed from a central repository to
match the different components of the design phase. Further, an assembler would allow the assembly of the different components and allow further simulation iterations before final fabrication.

As seen from the workflow, modelling and simulation, together with standardized visual representation and the ability to store and share the biological circuit in a machine-readable format, are key elements of the process. Several challenges exist in integrating standardized model visualization and simulation techniques in the workflow.

First, visualization standards should have the capability to capture biological entities at different granularities, from promoter sequences, ribosome-binding site sequences, genes, proteins to higher-order molecular pathways and complexes.

Second, simulation tools should be able to define models at these multiple scales, capturing unknown interactions and parameters while integrating standardized, characterized biological components into networks of interacting modules.

Third, there exists a knowledge gap between visual representations of biological systems vis-à-vis corresponding mathematical models. While graphical representations (molecular maps) are intended to capture the known biology of processes, mathematical models encode only parts of the detailed molecular maps owing to the underlying complexity of the interactions, insufficient data to characterize processes, unknown parameters or shortcomings in mathematical representation of complex interactions. In silico modeling and simulation tools should provide mechanisms to reconcile such knowledge gaps in their framework. Moreover, software tools should provide mechanisms for incorporating restrictions in parts assembly and design phases of biological circuits.

In this respect, development of a common framework, encompassing different tools and schemata employed in the different phases, is required to accelerate the progress of synthetic biology. To share the results of modelling efficiently, we need a common language in representing: (i) mathematical contents; (ii) semantics, annotations; and (iii) visual representation of models.

Figure 1 shows a schematic of the biological engineering process with different schemata available for standardized exchange of information. As seen from the figure, standards encompassing mathematical content, like the Systems Biology Markup Language (SBML; Hucka et al. 2003), semantics and annotation, like Minimum Information Requested in the Annotation of biochemical Models (MIRIAM; Le Novère et al. 2005), and visualization, like the Systems Biology Graphical Notation (SBGN; Le Novère et al. 2008), can be employed for modelling and simulation of biological parts, devices as well as systems. In order to facilitate in silico simulation, a common language for the simulation systems would facilitate the sharing of results and usage of different simulation engines. Efforts are now being made to standardize simulation result description such as SBRML (Dada et al. 2009), which can be integrated into the workflow as depicted in figure 1. The figure illustrates how modelling and simulation techniques can be employed at each step of the design and assembly process hierarchy of biological parts, devices and systems. However, such standards need to be enhanced to address the unique challenges of synthetic biology elucidated earlier.

In the remaining sections, we outline the different standardization efforts in the systems and synthetic biology communities and provide potential avenues for developing a common framework in a mutually beneficial manner.

3. STANDARDS AND TOOLS IN BIOLOGICAL ENGINEERING

3.1. Efforts in synthetic biology

The goal in synthetic biology is to develop engineered biological circuits with well-defined input–output behaviour. Thus, design, simulation and assembly tools that aid in the development of high-precision biological constructs form an integral part of this effort. Moreover, the ability to re-use well-characterized parts is a hallmark of any engineering discipline. In this respect, significant efforts have been undertaken in the standardization of biological parts and their systematic storage and retrieval, which we briefly review next.

As synthetic biology is an engineering discipline from the onset, efforts in standardization were in place at the very early stages of research activities. The Registry of Standard Biological Parts (http://parts.mit.edu/) is a database to create and maintain such building blocks, providing free access to an ‘open-commons’ of basic biological functions. The goal is to streamline the fabrication of complex constructs to programme synthetic biological systems. The registry stores the biological constructs, providing detailed worksheets of the input–output characteristics of biological components together with the interfaces for communication between them. It contains biological parts, which are combined to form biological devices that can be further connected to build engineered biological systems.

While the registry provides storage of the biological components, their properties and interfaces need to be defined in terms of standardized schemata that allows unambiguous definition of the parts and their behaviour. In this effort, the BioBrick parts, an open source genetic parts as defined via an open technical standards setting process that is led by the BioBricks Foundation (http://bbf.openware.org), represent an effort to introduce the engineering principles of abstraction and standardization into synthetic biology. BioBricks standard biological parts are DNA sequences of defined structure and function; they share a common interface and are designed to be composed and incorporated into living cells such as Escherichia coli to construct new biological systems.

3.1.1. Challenges in parts characterization and assembly

One of the major challenges faced by the synthetic biology community with regard to standard formation is how to characterize parts features. While it is...
currently defined in terms of promoter structure and sequences, it is not a characterization in terms of function in the context of interacting networks.

A proper level of description that may smoothly interface with a network-level context is at the device behaviour level. This is at the same level of description as in electric design. In electric design, apart from circuit diagrams, there are datasheets for each component that specify basic parameters and modes of action. For example, in transistor specification, datasheets define various basic parameters and behaviour characteristics of a transistor. Such specifications can be used to generate properly parametrized equivalent circuits that provide a versatile definition of functional behaviour in a specific network context. For example, in transistor specification, datasheets define various basic parameters and behaviour characteristics of a transistor. Such specifications can be used to generate properly parametrized equivalent circuits that provide a versatile definition of functional behaviour in a specific network context.

In the circuit-level equivalent circuit, parameters such as h_{fe}, i.e. current amplification ratio, and h_{ie}, i.e. input impedance, are defined. Electronic engineers can design and analyse circuits using these parameters without looking into details of implementations. This representation significantly enhanced our capability to design and analyse circuits and is particularly important when it has to be scaled up. At the same time, it should be noted that unlike electronic circuits in which an identical device can be used in multiple places in the system (such as using FET-type 2SK30A in different amplification modules), a synthetic biology device can be used only once in the system to avoid unexpected interferences. Thus, ‘device’ in the synthetic biology context shall be considered as ‘family of parts’. Therefore, it is essential for each device description to have parametric features reflecting different parts of the family.

The ability to define biological parts unambiguously at the device as well as network levels is one of the key challenges in synthetic biology. Current efforts to define interfaces to biological devices in a molecule-independent manner use parameters such as polymerase per second, which is the flow rate of RNA polymerase molecules along the DNA, or by ribosomes per second which measures the flow rate of ribosomes along the mRNA molecule. Figure 3a shows an illustrative device description of a banana odour generator from the BioBricks registry. In this figure, ATF1 transcription activity is described as a function of input signal that activates ATF1 transcription. The output, isoamyl acetate production, is described as a function of isoamyl alcohol and ATF1 transcription activity. In order to characterize the device, it is required to define a parameter capturing the function of the device, instead of the kinetic constant of ATF1 catalysing isoamyl alcohol conversion into isoamyl acetate. It is not always useful to describe the kinetic constant for ATF1 enzyme alone because BioBrick is assumed to be the building blocks at the device level. Thus, biological equivalents of parameters such as h_{fe} need to be defined that provide a rate at which changes in signalling to transcription of ATF1 affect the rate of isoamyl acetate production (e.g. k_{sp}: signal–product amplification rate). Also, it should have a parameter (k_{ip}: input–product rate) that characterizes change in product (isoamyl acetate) per change in input (isoamyl alcohol). The above example is only provided to describe the level
of abstraction at which an equivalent biological circuit shall be defined (figure 3b). With these parameters, Bio-Brick designers will be able to design scalable circuits without examining details of biological elementary reactions. This example highlights the need for developing a standard format for describing elementary building blocks at the device level, which can be integrated in synthetic biology parts databases, like BioBricks.

3.1.2. Software support in synthetic biology. With the development of parts databases on the one hand, efforts to build software support for synthetic biology are also underway. Software platforms such as BioJADE (Goler 2004), Athena, now called TinkerCell (Chandran et al. 2009), and GENOCAD (Cai et al. 2007) have been designed specifically for synthetic biology needs. Tools like GENEDesign (Richardson et al. 2006) provide a genome version control system, while BRICKIT and Clotho provide mechanisms to manipulate DNA and protein coding sequences. Machine-readable language efforts have also been developed in Antimony and LBS. Table 1 provides an overview of the common software tools and platforms in synthetic biology.

These tools focus on specific aspects of sequence design with minimal information on interactions at a network level. These will be powerful and useful tools for designing systems on a small scale, where possible interactions can be intuitively followed. However, scaling up of synthetic biology modules to form network elements will quickly make dynamical behaviours intractable. Moreover, higher level descriptions need to be developed at the level of device function and mode of action as device-level part characterizations become more commonplace. It is envisaged that as building blocks are assembled and scaled up to relatively complex networks, computer-assisted network design and modelling tools such as CELLDESIGNER (Funahashi et al. 2003) would be useful to capture network dynamics generated from assembled parts.

The efforts outlined earlier focus on the definition of standard parts, their common storage and retrieval and tools to simulate them. However, a significant aspect of biological engineering is the visual representation of the components (from parts to devices and finally systems), ability to simulate different components in silico and tools to support such graphical representation and simulation. In §3.2, we overview the different efforts in the systems biology community for visualization and simulation standards before providing insights into the development of a common computational framework across the synthetic and systems biology domains.

3.2. Efforts in systems biology

The focus in systems biology has been on understanding the mechanistic behaviour of biological components in a holistic manner and aggregating data from literature and experimental systems. Major efforts in systems biology have focused on the representation of biological pathways and their molecular interactions, together with the development of simulation schemata. Pathway standards have been developed, aiming to facilitate collaboration and data exchange among various research communities. The development of standards for computational platforms in biological engineering can be broadly defined in terms of four key feature elements, which we elucidate next:

(i) standardization of representation of mathematical contents,
(ii) semantics and annotations,
(iii) visual representation of models, and
(iv) simulation of biochemical networks.

3.2.1. Standardization of representation of mathematical contents. With the rapid increase in the volume of high throughput data available to systems biologists, efforts for defining standards for storage, analysis and exchange of large datasets have been undertaken on a community-wide scale. Standards include Gene Ontology (Ashburner et al. 2000) for describing gene functions, SBML and CellML (Lloyd et al. 2008) for describing biochemical reaction networks and Minimum Information About a Simulation Experiment (MIASE, http://www.ebi.ac.uk/compneur-srv/MIASE/), to name a few. While the goal of all these standards (extensively reviewed in Brazma et al. 2006; Strömbäck et al. 2007) is to define a consistent schema for data exchange, individual standards are targeted towards addressing specific issues. The ability to represent biological knowledge in a mathematically consistent format is key to performing in silico simulation and analysis of their dynamic behaviours. In this respect, SBML and CellML are two standards adopted across the systems biology community.

SBML is a machine-readable format for representing pathway models (http://sbml.org; Hucka et al. 2003).
It was developed by an international community of systems biologists and software developers aiming to provide a common intermediate format for data sharing among various computer modelling software applications. SBML is neutral with respect to programming languages and software encoding; however, it is encoded using XML (Bray et al. 2008). By supporting SBML as a format for reading and writing models,
different software tools (including programs for building and editing models, simulation programs, databases and other systems) can directly communicate and store the same computable representation of those models. Currently, there are over 160 software packages supporting SBML (http://sbml.org/SBML_Software_Guide/SBML_Software_Summary).

Another major standardization effort for machine-readable representation of biological pathways is CellML (http://www.cellml.org; Lloyd et al. 2008). It is an XML-based markup language originally developed by the Auckland Bioengineering Institute at the University of Auckland and affiliated research groups. It is similar to SBML, but more suited for multi-scale biological modelling capturing the structure and underlying mathematics of cellular models in a generic manner. CellML is growing in popularity as a portable description format for computational models, and groups throughout the world are using CellML for modelling or developing software tools based on it. Currently, there are a set of open-access tools and model storage databases based on CellML available at http://www.cellml.org/tools, including Virtual Cell (Loew & Schaff 2001), a Java-based modelling and simulation environment that imports and exports CellML.

While the current standards are largely geared towards mathematical modelling of biological pathways and molecular interactions, it is envisaged that future developments would be able to incorporate synthetic biology constructs, such as protein coding sequences, biological parts and device-level information in their formalism. Some software tools, such as OpenCell/PCEnV (table 1), support mathematical modelling for systems and synthetic biology constructs while using CellML as the native format for model storage. Similar efforts to enhance existing standards and synergize their usage would accelerate the adoption of consistent standards in biological engineering.

3.2.2. Semantics and annotation. For models to be informative, they need to be properly annotated with sufficient information attached to them enabling third parties to effectively use such models. BioPAX (http://www.biopax.org) is a collaborative effort to create a data exchange format for biological pathway data with ontological annotations. The main purpose is to facilitate data access, sharing and integration from multiple pathway databases by biologists. BioPAX supports representation of metabolic and signalling pathways, molecular and genetic interactions and gene regulation. Relationships between genes, small molecules, complexes and their states (e.g. post-translational protein modifications, mRNA splice variants, cellular location) are described, including biological events. BioPAX is complementary to other standard pathway information exchange languages, including SBML and CellML, as it focuses on large qualitative pathways and their integration rather than on mathematical modelling.

Since BioPAX targets annotation on pathways for existing organisms, it does not directly translate into the synthetic biology domain. However, BioPAX-like ontological annotation may need to be initiated for BioBricks. This is important as the semantics of each device (BioBricks) may become unmanageable once engineered circuits exceed certain levels of complexity and millions of variations arise for similar functional devices. The current registry of biological parts can be a potential starting point for such ontological annotations. Other effort in annotation, particularly for model annotations, exists in the MIRIAM project (http://www.ebi.ac.uk/miriam/; Le Novère et al. 2005). The MIRIAM standard defines the minimum information that has to be attached to the model so that the model can be informative by itself.

The Systems Biology Ontology (SBO; http://www.ebi.ac.uk/sbo/main/) project endeavours to enhance the semantics of models, regardless of modelling approaches (refer to Brazma et al. (2006) and Strömback et al. (2007), for details on semantics approaches in systems biology). Again, standards like MIRIAM and SBO, although designed for molecular network models, can be extended to synthetic biology devices and circuit descriptions, particularly to define standard semantics for biological parts and devices.

3.2.3. Visual representation of models. Clear and unambiguous visualization is a fundamental step in applying computational techniques to biological models for scientific discovery. It is important to have standard visual representation languages for describing events and concepts in biology, such as biochemical interaction network, inter- and intracellular signalling and gene regulation. Most of the field is permeated with ad hoc graphical notations that have little in common between different researchers, publications, textbooks and software tools. While simplified notations can be used for purposes of elucidation, standardized representation of biological entities is of paramount importance for exchange between computational tools.

Thus, it is imperative to define a comprehensive set of graphical symbols that have precise semantics and detailed syntactic rules defining their use and are insensitive to restrictions of any medium or software, so that they can be used across a large array of applications to enhance data sharing, exchange and integration.

Definition of a common lingua franca is an important step in the standardization of biological representations and technologies. Biology has traditionally been a descriptive science, where the role of pictures and diagrams cannot be overstated. A community-wide effort is currently underway to define the SBGN (http://sbgn.org). The goal of SBGN is to define a set of visual glyphs and syntax, so that anyone can understand what the diagram exactly means much in the same vein as electrical circuit diagrams used by chip designers. The SBGN project was initiated by a group of biochemists, molecular biologists, modellers and computer scientists, with the aim of developing and standardizing a systematic and unambiguous graphical notation for applications in systems biology. SBGN is expected to be used not only by systems biologists,
but also by biologists of all disciplines, educators, publishers and students. Level 1 specification of the SBGN process diagram was released in August 2008 (Le Novère et al. 2008). The SBGN entity relationship diagram and activity flow diagram specifications now exist as draft proposals and are expected to be released in 2009. Currently, SBGN specification only defines visual icons and their syntax. Specification of the file format on how such graphics shall be stored and exchanged is the subject of future development.

Another effort in the direction of visualization is the SBML layout extension (Gauges et al. 2006). While the SBML file format does not provide for the storage of visual information for reaction graphs, the extension aims to provide a schema for describing the position and size of objects associated with biochemical reactions, thus providing the potential to render complex graphical standards with the SBML schema.

Early efforts to develop consistent schematics for synthetic biology constructs are represented by BOGL (http://openwetware.org/wiki/Endy:Notebook/BuildBrick_Open_Graphical_Language), a graphical language for the formal description of standard biological parts. It aims to define symbolic notations for different biological parts, such as selection markers and restriction markers (Shetty et al. 2008). The standardization of visual representations in biological engineering presents new areas of research, particularly in enhancing existing standards to incorporate multi-level views—from detailed sequence level, binding site domain level views to molecular interactions, pathways and large-scale networks, in a consistent format. Visualization tools in the biological domain need to support such a semantically zoomable (Hu et al. 2007) multi-dimensional view of biological parts, devices and systems in the future.

3.2.4. Simulation of biochemical networks. While standardization is an integral part of the process of computational systems biology, the development of software tools for model building, distribution and running simulations is another important dimension. In this direction, plenty of model building and simulation tools are available. CELLDesigner (http://www.cellerator.org; Shapiro et al. 2003), COPASI (http://www.copasi.org; Hoops et al. 2006) and Dizzy (http://www.systemsbiology.org/Technology/Data_Visualization_and_Analysis/Dizzy; Ramsey et al. 2005) in the academic community and SimBiology from Mathworks Inc. (http://www.mathworks.com/products/simbiology/) and PhysiOLab (Entelos Inc.; http://www. entelos.com/physiolabModeler.php) exist, each catering to different modelling techniques (refer to Hucka et al. (2004) for a review on SBML compliant simulators).

One of the most popular and widely used tools in this category is CELLDesigner (Funahashi et al. 2003)—a modelling and simulation tool to visualize, model and simulate gene-regulatory and biochemical networks. Two major characteristics embedded in CELLDesigner boost its usability to create/import/export models: (i) solidly defined and comprehensive graphical representation, specifically process diagram-based notations (Kitano et al. 2003; Kitano et al. 2005) of network models and (ii) SBML as a model-describing basis, which functions as inter-tool media to import/export SBML-based models. Moreover, CELLDesigner provides the ability to embed or smoothly connect via Systems Biology Workbench (Sauro et al. 2003) different simulation/analysis packages that allow the simulation of the pathways using various simulation techniques such as COPASI, SBML ODE SOLVER (Machné et al. 2006), etc.

The simulation tools in the systems biology space currently focus on simulation of biological pathways and networks represented as biochemical reactions. On the other hand, simulation tools in synthetic biology allow the study of the dynamic behaviour of specific building blocks (like transcription constructs). As mentioned earlier, large-scale assembly of biological constructs would require multi-level modelling and simulation capabilities. For example, CELLDesigner currently does not have the capability to assist parts design and simulation. However, the software supports a plug-in architecture through which it is possible to establish close links with tools such as BioJADE or to develop plug-ins for assembly and design of biological parts. Such synergistic integration across tools is essential to create consistent design platforms for synthetic biology.

4. BUILDING A COMMON FRAMEWORK

As reviewed in the previous section, various standards and technologies are already in place for practical use to cope with distinct levels of biological modelling and simulation. The goal of standardization is to fit together different pieces in a consistent manner to build a useful whole (Brazma et al. 2006). Integration of the various approaches and efforts to build a common framework to share accumulating knowledge in models is critical for advance in biological science across various disciplines. However, as elucidated in previous sections, several challenges need to be addressed to enhance existing standards in mathematical representations, visualization and modelling tools to accommodate the unique features of synthetic biology.

For representation and exchange of biochemical network models, SBML can be used as a good medium. The essential strength of the SBML format lies in the simulation of biochemical networks. SBML is defined as a set of standards to facilitate effective and efficient sharing of models with biochemical reactions. As mentioned earlier, semantic annotation of biological models is an important step in developing consistent, unambiguous representation. SBML, in conjunction with annotation standards such as MIRIAM, provides the ability to store and share information in a seamless, unambiguous fashion, which can be used as a medium for study and analysis in both the synthetic and systems biology communities.

There have already been some attempts to provide the tools for synthetic biological modelling, which allow converting the models into SBML format, such as ATHENA (Chandran et al. 2009) and ASAPARTS (Rodrigo et al. 2007a,b).
There are several models that have been converted into SBML format and curated and stored in public databases. Elowitz & Leibler’s (2000) classic ‘repressilator’ model, for example, is already registered and available at BioModels database (http://biomodels.net; Le Novere et al. 2006). While efforts are underway to convert models of biological circuits into SBML format (Rodrigo et al. 2007a, b; Chandran et al. 2009), which can then be simulated using various SBML compliant simulation tools, a concerted effort is imperative to provide consistent visual representation of the various BioBricks—biological parts, devices and systems.

On the other hand, on-going efforts in the SBGN community provide a platform for defining a common visual language for biological systems—from engineered circuits to cellular pathways. The SBGN schema envisages supporting the representation of systems at different scales through process diagrams, activity flow or entity relationship diagrams. These different diagrammatic schemata allow the representation of knowledge at different levels of abstraction depending on the scope, accuracy of knowledge and other design requirements. We provide some illustrative examples of possible representation of classical biological constructs in current process diagram notation. In the process diagram, nodes represent the states of biological entities and arcs describe biological process between the states. As a first example of developing an SBGN process diagram compliant representation of synthetic biological circuits, we consider the classical toggle switch model by Gardner et al. (2000). The genetic toggle switch model, constructed by Gartner et al., toggles between stable transcription from either of two promoters in response to external signals (figure 4a, b). While figure 4a captures the toggle switch behaviour of the system, figure 4b endeavours to give a more mechanistic view, showing, for example, the mechanism of repression of the promoters by complex formation with the repressors. It is possible to capture different mechanisms of repression in the process diagram notation, where the biology of the process is known.

Another example illustrated here is a translational switch (Isaacs et al. 2004). While the classical diagram (figure 5a) captures the structural changes of the entities in the biological process, the process diagram...
Figure 5. (a) An example of translational switch (Isaacs et al. 2004). (b) An example of equivalent riboregulator system represented in the process diagram format. (a) The artificial riboregulator system, shown in the graphical representation typically adopted by synthetic biology, and (b) interpretation in the process diagram notation. The circle with slash glyph represents the source of the creation of the entity or a state. The arrow with bar indicates necessary stimulation to the process. Lines connected with black dots represent the binding (e.g. RNA and ribosome, taRNA and crRNA).
(figure 5b) clearly identifies each step of the event and illustrates the mechanism of causes and effects of the processes.

As can be observed from these diagrams (figures 4 and 5), the genetic toggle switch as well as translational switch can be represented in process diagram manner. As both diagrams (figures 4b and 5b) are constructed in CellDesigner and stored in the SBML format, it is possible to simulate the characteristics of the models once the dynamics of the processes is described in mathematical formulae in SBML format.

The visual elements (glyphs) in the current SBGN standard proposal may need to be enhanced to accommodate the different components used in the synthetic biology community, as the current standard evolves in an inter-community-wide collaborative manner. Sharing of symbols representing identical biological elements would further help in developing a common graphical lingua franca for biological engineering, on the same lines as in electrical circuit diagrams and other advanced engineering disciplines. We strongly believe that careful collaboration on the visual as well as model representation aspects between the two communities would foster the development of a standard graphical notation schema and accelerate the application of computational techniques.

5. SUMMARY

While the paradigm of systems biology endeavours a holistic understanding of the working principles of complex biological networks, discovery by design forms a key essence in synthetic biology, motivated by Richard Feynman’s phrase ‘What I cannot create, I do not understand’ (Simpson 2006). In this perspective, the two disciplines hold the potential of complementing each other—analysis, modelling and simulation of biological networks can provide insights into the design and synthesis of de novo biological circuits. In this article, we provided an overview of the role of standardization in developing systematic and consistent computational platforms for biological systems. Particularly, graphical notations for visualization and schemata for mathematical modelling of such systems will play a pivotal role in enforcing engineering rigours in the study of biology. As elucidated here, existing standards of model representation (SBML) and graphical visualization (SBGN) prevalent in the systems biology community can be extended to incorporate synthetic biological constructs and models. Such collaborative efforts would pave the path towards a common, standardized schematic framework for understanding as well as engineering biological systems.

At the same time, development of a standard specification for genetic building blocks will force the community to describe each BioBrick in a well-defined form as exemplified in the equivalent circuit concept in electronics. Such a practice will not only benefit the synthetic biology community, but also the systems biology community because it triggers accumulation of knowledge on canonically defined genetic circuits. When synthetic biology matures as an engineering field, the issues discussed in this paper will be the common practice and that is when it will be regarded as precision engineering.

This research is, in part, supported by ERATO-SORST Program of the Japan Science and Technology Agency (JST), Genome Network Project of the Ministry of Education, Culture, Sports, Science and Technology, NEDO Fund for International Standard Formation from the New Energy Development Organization and the Okinawa Institute of Science and Technology.

REFERENCES

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F. (eds) 2008 Extensible Markup Language (XML) 1.0, 5th edn. See http://www.w3.org/TR/REC-xml/.
Hasty, J., McMillen, D. & Collins, J. J. 2002 Engineered gene
medium for representation and exchange of biochemical
Hucka, M. et al. 2004 Evolving a lingua franca and associated
software infrastructure for computational systems biology:
Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. 2003 Pre-
diction and measurement of an autoregulatory genetic
module. Proc. Natl Acad. Sci. USA 100, 7714–7719. (doi:
10.1073/pnas.1332628100)
Isaacs, F. J., Dywer, D. J., Ding, C., Pervouchine, D. D.,
Cantor, C. R. & Collins, J. J. 2004 Engineered riboregu-
lators enable post-transcriptional control of gene expression.
Itaya, M., Tsuge, K., Koizumi, M. & Fujita, K. 2005 Combin-
ing two genomes in one cell: stable cloning of the
Synechocystis PCC6803 genome in the Bacillus subtilis 168
genome. Proc. Natl Acad. Sci. USA 102, 15 971–15 976. (doi:
10.1073/pnas.0503861102)
BioSiloSat 1, 169–176. (doi:10.1016/S1478-5382(03)00380-1)
Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. 2005
Using process diagrams for the graphical representation
10.1038/nbt1111)
Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E. &
Matsubara, H. 1997 RoboCup: a challenge problem for AI.
AI Mag. 18, 73.
Le Novère, N. et al. 2005 Minimum information requested in the
23, 1509–1515. (doi:10.1038/nbt1156)
Le Novère, N. et al. 2006 BioModels database: a free, central-
ized database of curated, published, quantitative kinetic
models of biochemical and cellular systems. Nucleic Acids
Res. 34, D689–D691. (doi:10.1093/nar/gkj092)
Le Novère, N. et al. 2008 Systems biology graphical notation:
2008.2320.1).
environment for computational cell biology. Trends
01740-1)
Maché, R., Finney, A., Müller, S., Lu, J., Widder, S. &
Flamm, C. 2006 The SBML ODE Solver Library: a
native API for symbolic and fast numerical analysis of
reaction networks. Bioinformatics 22, 1406–1407. (doi:
10.1093/bioinformatics/btl086)
nal.pone.0002671)
PricewaterhouseCoopers 2008 Pharma 2020: virtual R7D—
which path will you take? See http://www.pwc.com/
textweb/pwcpublications.nsf/docs/91BF330647F4A025
572F2005ECC22.
Ramsey, S., Orrell, D. & Bolouri, H. 2005 Dizzy: stochastic
simulation of large-scale genetic regulatory networks.
1093/bioinformatics/btm231)
Richardson, S. M., Wheelan, S. J., Yarrington, R. M. &
Boeke, J. D. 2006 GeneDesign: rapid, automated design
of multikilobase synthetic genes. Genome Res. 16,
550–556. (doi:10.1101/gr.4431306)
Rodrigo, G., Carrera, J. & Jaramillo, A. 2007a Asmaps:
assembly of biological model parts. Syst. Synth. Biol. 1,
Rodrigo, G., Carrera, J. & Jaramillo, A. 2007b Genetests: au-
matic design of transcriptional networks. Bioinformatics
Rullmann, J. A., Struemper, H., Defranoux, N. A., Ramanujan,
S., Meeuwise, C. M. & van Elsas, A. 2005 Systems biology
for battling rheumatoid arthritis: application of the Entolos
(doi:10.1099/ip-syb.20050053)
2003 Next generation simulation tools: the Systems Biology
(doi:10.1089/153623103322637670)
Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J.
& Mjolsness, E. D. 2003 Cellerator: extending a computer
algebra system to include biochemical arrows for signal
transduction simulations. Bioinformatics 19, 677–678. (doi:
10.1093/bioinformatics/btg042)
Shetty, R. P., Endy, D. & Knight, T. 2008 Engineering
(doi:10.1186/1754-1611-2-5)
Simpson, M. L. 2006 Cell-free synthetic biology: a bottom-up
(doi:10.1038/msb4100144)
Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H.,
Tsirivm, L. S. & Hasty, J. 2008 A fast, robust and tunable
1038/nature07389)
Strömbeck, L., Hall, D. & Lambrix, P. 2007 A review of
standards for data exchange within systems biology.
The Economist 2005 Models that take drugs. The Economist
2005, 856–860. (doi:10.1038/nature04473)
Hastie, J., McMillen, D. & Collins, J. J. 2002 Engineered gene
Hill, A. D., Tomshine, J. R., Weeding, E. M., Sotropoulos, V. &
Kaznessis, Y. N. 2008 SynBioSS: the synthetic biology mod-
bioinformatics/btn468)
Hoo, Z., Mellor, J., Wu, J., Kanelkis, M., Stuart, J. M. &
DeLisi, C. 2007 Towards zoomable multidimensional
1038/nbt1304)
Hucka, M., Finney, A., Sauro, H., Bolouri, H. & Doyle, J.
2003 The Systems Biology Markup Language (SBML): a
medium for representation and exchange of biochemical
1093/bioinformatics/btg015)