Synthetic biology: history, challenges and prospects

Organized by Jim Haseloff, Jim Ajioka and Richard Kitney

Introduction
Synthetic biology: history, challenges and prospects
J. Haseloff & J. Ajioka

Articles
Consistent design schematics for biological systems: standardization of representation in biological engineering
Y. Matsuoka, S. Ghosh & H. Kitano

Designing and encoding models for synthetic biology
L. Erdem, N. Rodriguez, N. Juty, V. Chelliah, C. Laibe, C. Li & N. Le Novère

A programming language for composable DNA circuits
A. Phillips & L. Cardelli

Towards programming languages for genetic engineering of living cells
M. Pedersen & A. Phillips

Methods for improving simulations of biological systems: systemic computation and fractal proteins
P. J. Bentley

You’re one in a googol: optimizing genes for protein expression
M. Welch, A. Villalobos, C. Gustafsson & J. Minshull

Challenges in the computational design of proteins
M. Suárez & A. Jaramillo

Opportunities for microfluidic technologies in synthetic biology

Towards the engineering of in vitro systems
C. Hold & S. Panke

Modelling amorphous computations with transcription networks

Harnessing nature’s toolbox: regulatory elements for synthetic biology
P. M. Boyle & P. A. Silver

Synthetic biology and biomass conversion: a match made in heaven?
C. E. French

The ethical landscape: identifying the right way to think about the ethical and societal aspects of synthetic biology research and products
S. Yearley

Synthetic biology: history, challenges and prospects

Organized by Jim Haseloff, Jim Ajioka and Richard Kitney