Compliance of a microfibril subjected to shear and normal loads

Jingzhou Liu¹, Chung-Yuen Hui¹,* Lulin Shen¹ and Anand Jagota²

¹Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
²Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA

Many synthetic bio-inspired adhesives consist of an array of microfibrils attached to an elastic backing layer, resulting in a tough and compliant structure. The surface region is usually subjected to large and nonlinear deformations during contact with an indenter, leading to a strongly nonlinear response. In order to understand the compliance of the fibrillar regions, we examine the nonlinear deformation of a single fibril subjected to a combination of shear and normal loads. An exact closed-form solution is obtained using elliptic functions. The prediction of our model compares well with the results of an indentation experiment.

Keywords: compliance; elastica theory; fibrils

1. INTRODUCTION

Recent interest in bio-inspired adhesives has motivated many researchers to fabricate microfibril arrays (Liu & Bhushan 2003; Peressadko & Gorb 2004; Chung & Chaudhury 2005; Crosby et al. 2005; Glassmaker et al. 2005, 2007; Huber et al. 2005; Northen & Turner 2005; Yurdumakan et al. 2005; Kim & Sitti 2006; Majidi et al. 2006; Aksak et al. 2007; Gorb et al. 2007; Greiner et al. 2007; Varenberg & Gorb 2007) and to study their contact mechanics and adhesion (Jagota & Bennison 2002; Gao et al. 2003, 2005; Persson & Gorb 2003; Hui et al. 2004; Persson et al. 2005; Spolenak et al. 2005a, b; Tang et al. 2005; Bhushan et al. 2006; Tian et al. 2006; Yao & Gao 2006; Chen & Gao 2007). Most of these studies focus on how the interface between the microfibrils and a smooth, hard substrate separates under a normal load. Of equal importance is how these fibrillar surfaces respond to a combination of normal and shear loads. For example, experiments have demonstrated that the maximum shear force a gecko seta can support is approximately six times greater than its normal pull-off force (Autumn et al. 2000), and direct measurements of how various species adhere to surfaces are conducted under shear (Irschick et al. 1996). However, these observations are often interpreted using theories based on the normal contact of surfaces. Therefore, there is a need to develop contact and adhesion models that take account of shear.

In the past year, there have been several experimental studies on the frictional behaviour of microfibril arrays against a flat substrate (Majidi et al. 2006; Ge et al. 2007). The fibril arrays fabricated by Majidi et al. (2006) and Ge et al. (2007) consist of very stiff fibrils, whereas those fabricated by P. R. Guduru (2007, personal communication) and Shen et al. (2008) are made of poly(dimethylsiloxane) (PDMS), a soft elastomer with a shear modulus of the order of 1 MPa. Despite the large differences in modulus, what emerges from these experiments is that the static friction of these arrays is much higher than that exhibited by flat unstructured controls made of the same material.

The mechanics of a flat elastic substrate indented by a smooth, soft elastomer under a normal load is well described by the Johnson–Kendall–Roberts theory (Johnson et al. 1971). A theory for the compliance of microfibril arrays under normal indentation has been developed (Noderer et al. 2007). While there is a strong quantitative influence of the fibrillar architecture on compliance, there are qualitative similarities between it and an unstructured flat control. For example, the load versus contact area curves have similar shapes and compliance generally decreases with increasing contact area (increasing load). The situation can be quite different with shear. Figure 1a shows schematically an experiment in which a film-terminated PDMS microfibril array is moved in shear relative to a fixed spherical indenter. Briefly (see Shen et al. (2008) for details), the microfibril array consists of micropillars oriented normal to an elastic PDMS backing layer. The micropillars are connected at their terminal ends by a thin, flexible film. This structure has been shown to significantly improve adhesion when compared with a flat unstructured control (Glassmaker et al. 2007; Noderer et al. 2007). The backing layer is bonded to a glass slide that is placed on an inverted optical microscope. Since PDMS is transparent, its deformation can be recorded by the microscope. A fixed normal load, FN, is applied to press the indenter into contact with the sample surface (i.e. the thin film).

*Author for correspondence (ch45@cornell.edu).
The shear force F_s is applied by translating the glass slide at a constant rate. A typical shear force versus shear displacement curve is shown in figure 1b. As the relative shear displacement between the indenter and the sample increases, the shear force increases to a peak value (stage 1). Beyond the peak, it decreases rapidly (stage 2) and then remains nearly constant (stage 3). Visual inspection of the contact region in stage 1 reveals that it changes in shape and size, but there is no macroscopic sliding between the indenter and the sample. In stage 3, the indenter slides steadily on the sample. More detailed explanations of the physics behind these different stages can be found in Shen et al. (2008). Briefly, in stage 1, the fibrils in contact with the indenter are loaded under shear. As shear increases, the elastic energy stored in these fibrils increases. This elastic energy is released suddenly in stage 2 due to the propagation of an interface crack. In stage 3, relative motion between the indenter and the sample appears to be accommodated by the propagation of Schallamach-like waves.

Owing to the applied shear displacement, the top of a typical fibril in a region enclosing the contact zone is displaced relative to the bottom. Figure 2 shows three optical micrographs of the contact region corresponding to the three points in figure 1b. In figure 2, the image of the top end of a fibril appears as a fuzzy grey circle, whereas the bottom end appears as a smaller dark square. This difference allows us to determine the relative deflection Δ_T of each fibril. (a–c) correspond to the points A–C in figure 1b, respectively. The contact region Q_c is the white polygon.

Figure 1. (a) A glass spherical indenter is placed on the surface of a microfibril array under a fixed normal force (P) (applied via a mechanical balance). The sample is translated at a constant rate, u, and the shear force is measured by a load cell. Deformation near the contact region is recorded by means of an inverted optical microscope. The shear load versus shear displacement curve for a fibrillar sample is shown in (b). Three points are selected for comparison with the theory.

Figure 2. Optical micrographs of the contact region. The direction of shear displacement u is indicated by the arrow on the right. The image of the top end of a fibril appears as a fuzzy grey circle, whereas the bottom end appears as a smaller dark square. This difference allows us to determine the relative deflection Δ_T of each fibril. (a–c) correspond to the points A–C in figure 1b, respectively. The contact region Q_c is the white polygon.
The coordinates of the point ‘p’ are \((x(s), y(s))\).

The beam at a point ‘p’ on the bar (figure 3). The relation between curvature and moment, i.e. the load-bearing capacity of a fibrillar array under nonlinear deformation of individual microfibrils. The model for fibril deflection and theoretical results based on it are presented in §2. In §3 we compare model predictions with the experiments.

2. ELASTICA MODEL OF A STRETCHABLE BEAM

We model the deformation of a typical microfibril in stage 1. Since the length of a typical microfibril is significantly greater than its lateral dimensions, it will be modelled as a stretchable elastica. Inside the contact zone, which is denoted by \(\Omega\), the thin film is well adhered to the indentor. Therefore, a fibril in \(\Omega\), cannot rotate at this end, implying a clamped boundary condition. For a sufficiently long fibril, it is reasonable to assume that its bottom end is also clamped. We further assume that fibrils do not twist; this assumption is consistent with the loading conditions in our experiments. Finally, we neglect the compliance of the half-space to which the fibril is attached; this is again reasonable since fibrils are slender.

The problem of interest is an initially straight elastic beam with an initial length, \(L_0\), that is clamped at both ends. One end of the beam is fixed to a rigid wall (the backing layer) while the other end is subjected to vertical and tangential displacements \(\Delta_N\) and \(\Delta_T\), respectively. Let \(N_0\), \(T_0\), and \(M_0\) denote the unknown normal, shear and moment applied at this end, respectively. Let \(s\) denote the arc length of the deformed beam and \(x(s), y(s)\) denote the deformed coordinates of the beam at a point ‘p’ on the bar (figure 3).

Following Frisch-Fay (1962), we assume a linear relation between curvature and moment, i.e.

\[
EI \frac{d\psi}{ds} = M(s), \tag{2.1a}
\]

where \(E\) is the Young modulus; \(I\) is the moment of inertia; \(\psi\) is the rotation of the deformed bar relative to the \(x\)-axis; and \(M(s)\) is the moment acting at a generic point ‘p’. (The free-body diagram of the bar is shown in figure 4.)

The relevant boundary conditions are as follows:

\[
\begin{align*}
\psi(s = 0) &= \psi(s = L) = 0, \tag{2.1b} \\
x(s = 0) &= 0 \quad y(s = 0) = 0, \tag{2.1c} \\
x(s = L) &= L_0 + \Delta_N, \quad y(s = L) = \Delta_T, \tag{2.1d}
\end{align*}
\]

where \(L\) denotes the deformed length of the beam. The free-body diagram in figure 4 shows that

\[
M(s) = M_0 - N_0(\Delta_T - y(s)) + T_0(L_0 + \Delta_N - x(s)). \tag{2.2}
\]

Substituting (2.2) into (2.1a) gives

\[
EI \frac{d\psi}{ds} = M(s)
= M_0 - N_0(\Delta_T - y(s)) + T_0(L_0 + \Delta_N - x(s)). \tag{2.3}
\]

Let \(N(s)\) and \(T(s)\) denote the normal (normal to the cross section of the deformed bar) and shear forces along the deformed bar, respectively. Force balance requires that

\[
\begin{align*}
N \cos \psi - T \sin \psi &= N_0, \tag{2.4}\nN \sin \psi + T \cos \psi &= T_0.
\end{align*}
\]

Equation (2.4) implies that

\[
N = N_0 \cos \psi + T_0 \sin \psi. \tag{2.5}
\]

Note that, by definition,

\[
\begin{align*}
\frac{dx}{ds} &= \cos \psi, \tag{2.6a} \\
\frac{dy}{ds} &= \sin \psi. \tag{2.6b}
\end{align*}
\]

Equations (2.6a) and (2.6b) imply that

\[
\begin{align*}
x &= \int_0^s \cos \psi(s') ds', \tag{2.7a} \\
y &= \int_0^s \sin \psi(s') ds'. \tag{2.7b}
\end{align*}
\]

Combining (2.1d), (2.7a) and (2.7b), we have

\[
\begin{align*}
L_0 + \Delta_N &= \int_0^s \cos \psi(s') ds', \tag{2.8a} \\
\Delta_T &= \int_0^s \sin \psi(s') ds'. \tag{2.8b}
\end{align*}
\]
To eliminate x and y from equation (2.3), we differentiate (2.3) by s and use (2.6a) and (2.6b),

$$EI \frac{d^2 \psi}{ds^2} = N_0 \sin \psi(s) - T_0 \cos \psi(s).$$

(2.9)

Multiplying both sides of (2.9) by $d\psi/ds$ and integrating the resulting expression gives

$$\left(\frac{d\psi}{ds} \right)^2 = -\frac{2}{EI} (N_0 \cos \psi(s) + T_0 \sin \psi(s)) + D.$$

(2.10)

The integration constant D is determined using the boundary conditions $EI d\psi(s = L)/ds = M_0$ and $\psi(s = L) = 0$, and is found to be

$$D = \frac{2}{EI} N_0 + \left(\frac{M_0}{EI} \right)^2.$$

(2.11)

Integrating (2.10) with respect to ψ, we obtain

$$s = \int_0^\psi \frac{d\psi'}{\sqrt{-\frac{2}{EI} (N_0 \cos \psi' + T_0 \sin \psi')} + D},$$

$$0 \leq \psi \leq \psi_{\text{max}},$$

(2.12)

where we have retained only the positive root. By symmetry (figure 3), the angle ψ increases with arc length, s, from either end and reaches a maximum value of ψ_{max} at the midpoint. The value of ψ_{max} is found using $d\psi/ds = 0$,

$$-\frac{2}{EI} (N_0 \cos \psi_{\text{max}} + T_0 \sin \psi_{\text{max}}) + D = 0.$$

(2.13)

2.1. Extensibility

Let λ denote the stretch ratio of a material point ‘p’ on the beam. It can be labelled by its coordinates, X, on the initially straight beam, which coincides with the horizontal axis, i.e. $X \in (0, L_0)$. Point ‘p’ is displaced to coordinates $(x(s), y(s))$ on the deformed beam. Assuming that the stretch is proportional to the local normal force,

$$\lambda = \frac{ds}{dX} \Rightarrow \lambda = 1 - \frac{ds - dX}{dX} = cN(x(s), y(s))$$

$$\Rightarrow \frac{ds}{dX} = 1 - cN(x(s), y(s)),$$

(2.14)

where $c = 1/EA$ and A is the cross-sectional area of the beam. Equation (2.14) can be integrated to give

$$\int_0^L \frac{ds'}{1 + cN(x(s'), y(s'))} = \int_0^{L_0} dX = L_0.$$

(2.15)

Using (2.5), equation (2.15) becomes

$$\int_0^L \frac{ds'}{1 + cN_0 \cos \psi(s') + T_0 \sin \psi(s')} = L_0.$$

(2.16)

For a given T_0 and N_0, one can solve equations (2.8a), (2.8b), (2.12) and (2.16) for A_N, A_T, M_0 and L, with

$$\psi \left(s = \frac{L}{2} \right) = \psi_{\text{max}}.$$

(2.17)

2.2. An equivalent problem

The deflection in figure 3 can also be obtained by moving the right (left) end of the beam up (down) by $\pm A_T/2$ and outwards by $A_N/2$, with the midpoint of the beam fixed. If we measure s from the left end of the beam, then it is easily seen that ψ_{max} is attained at $s = L/2$. In addition, we can solve the problem for $s \in (0, L/2)$.

The boundary conditions are

$$\psi(s = 0) = 0,$$

$$\psi'(s = L/2) = 0,$$

$$\psi \left(s = \frac{L}{2} \right) = \psi_{\text{max}},$$

$$x(s = 0) = y(s = 0) = 0,$$

$$x(s = L/2) = (L_0 + A_N)/2,$$

$$y(s = L/2) = A_T/2.$$

(2.18)

The known quantities are N_0, T_0, L_0; the unknowns are A_N, A_T, L and the constant D. The constant D can be expressed in terms of the unknowns A_N, A_T, using (2.11) and noting that the moment at the centre of the deflected beam is zero, i.e.

$$M_0 + \frac{(L_0 + A_N)T_0}{2} - N_0 A_T = 0.$$

(2.19)

The extensibility condition, equation (2.16), becomes

$$\int_0^{L/2} \frac{ds'}{1 + cN_0 \cos \psi(s') + T_0 \sin \psi(s')} = L_0/2.$$

Likewise, equations (2.8a) and (2.8b) become

$$\frac{L_0 + A_N}{2} = \int_0^{L/2} \cos \psi(s')ds',$$

$$\frac{A_T}{2} = \int_0^{L/2} \sin \psi(s')ds'.$$

(2.20)

(2.21)

Given N_0, T_0, L_0, equations (2.12), (2.20), (2.21a) and (2.21b) can be solved to find the unknowns A_N, A_T, L.

2.3. Results

There is a simple way to solve the above problem and to reduce the solution to elliptic integrals (see equations (A 20), (A 22) and (A 23b) in appendix A). Details are given in appendix A; here we state the main results.

The problem can be reduced to the solution of the following three decoupled equations:

$$\sqrt{\frac{EI}{2A}} \int_{\theta_0}^{\theta_{\text{max}}} \frac{dq}{(1 + cA \sin q) \sqrt{\sin \theta_{\text{max}} - \sin q}} = L_0/2,$$

$$\frac{A_T}{2} = \sqrt{\frac{EI}{2A}} \int_{\theta_0}^{\theta_{\text{max}}} \frac{dq}{\sqrt{\sin \theta_{\text{max}} - \sin q}},$$

$$\frac{(L_0 + A_N)}{2} = \sqrt{\frac{EI}{2A}} \int_{\theta_0}^{\theta_{\text{max}}} \frac{dq}{\cos(q - \theta_0) \sqrt{\sin \theta_{\text{max}} - \sin q}}.$$

(2.22)

(2.23)

(2.24)
where A is the magnitude of the total applied force, i.e.
$$A = \sqrt{N_0^2 + T_0^2} \quad (2.25a)$$
and θ_0 is the phase angle of the applied force, i.e.
$$N_0/A = \sin \theta_0, \quad T_0/A = \cos \theta_0. \quad (2.25b)$$

Finally,
$$q_{\text{max}} \equiv \theta_0 + \dot{\psi}_{\text{max}} \quad (2.26)$$
in (2.22)–(2.24). To find Δ_N and Δ_T given T_0 and N_0, we solve equation (2.22) for q_{max} given T_0 and N_0. We then substitute q_{max} into (2.23) and (2.24) to find Δ_N and Δ_T.

2.4. Normalization

To expedite the analysis, we define the following normalized variables:
$$T_0 = \frac{T_0 L_0^2}{2EI}, \quad N_0 = \frac{N_0 L_0^2}{2EI}, \quad \tilde{A} = \frac{A L_0^2}{2EI}, \quad \tilde{\Delta}_{N/T} = \frac{\Delta_{N/T}}{L_0}.$$

After normalization, equations (2.22)–(2.24) become
$$\int_{\theta_0}^{\theta_{\text{max}}} \frac{dq}{1 + \frac{2EI}{L_0^2} \tilde{A} \sin q \sqrt{\sin q_{\text{max}} - \sin q}} = \sqrt{\tilde{A}}, \quad (2.28)$$
$$\tilde{\Delta}_T = \frac{1}{\sqrt{\tilde{A}}} \int_{\theta_0}^{\theta_{\text{max}}} \frac{\sin(q - \theta_0) \sqrt{\sin q_{\text{max}} - \sin q}}{\sqrt{\sin q_{\text{max}} - \sin q}} \, dq, \quad (2.29)$$
$$1 + \tilde{\Delta}_N = \frac{1}{\sqrt{\tilde{A}}} \int_{\theta_0}^{\theta_{\text{max}}} \cos(q - \theta_0) \frac{dq}{\sqrt{\sin q_{\text{max}} - \sin q}}. \quad (2.30)$$

It is interesting to note that the normalized equations (2.28)–(2.30) depend on two dimensionless parameters: θ_0, which is the phase angle of loading, and $2cEI/L_0^2 = 2I/AL_0^3$, which is a purely geometric quantity. For a beam with a square cross section with side length b, $2I/AL_0^3$ is proportional to $(b/L_0)^2$, the aspect ratio squared. The numerical results presented in §2.5 are for $b = 14 \mu m$ and length $L_0 = 67 \mu m$, which are the dimensions of fibrils used in our experiments.

2.5. Numerical results

The normalized shear displacement $\tilde{\Delta}_T$ is plotted against T_0 for $N_0 = 0$ in Figure 5. The prediction of the BCM (derived in appendix B for our boundary condition) for small \tilde{A} is
$$\tilde{\Delta}_T = \frac{1}{6} \tilde{T}_0, \quad (2.31)$$
$$\tilde{\Delta}_N = \tilde{C}_{\text{NO}} N_0 + \frac{1}{6} \frac{\tilde{C}_{\text{NO}}}{(1 - \tilde{C}_{\text{NO}} N_0)} \tilde{T}_0^2. \quad (2.32)$$

where $\tilde{C}_{\text{NO}} \equiv 2I/\theta^2 L_0^4$ is the normalized compliance for a bar under a pure normal load. Note that the shear compliance for small \tilde{A} is independent of the normal load.
significant with increasing applied shear load T_0; for a fixed T_0, it also increases slightly with increasing compressive normal load, as shown in figure 8b.

3. COMPARISON WITH THE EXPERIMENTS

We give an example to illustrate how our model can be used to interpret the experiments. As mentioned in §1, the relative deflection of the fibrils (i.e. ΔT) can be measured in our experiments. Since fibrils far away from the contact zone Ω_2 do not carry load, we need only to measure deflections inside a sufficiently large region Ω that contains Ω_2. In our experiments, the normal force applied on the indenter, F_N, is much smaller than the total shear force F_s on the sphere. Therefore, we assume that the normal force N_0 acting on each fibril is approximately zero. With this assumption, ΔT and N_0 are known for each fibril ($N_0=0$), and the shear force, T_0, acting on these fibrils can be computed using our model. To expedite the computation, the result of figure 9 is represented as a relationship between T_0 and ΔT using a seventh-degree polynomial, i.e.

$$T_0 = 261.65\Delta T - 1296.2\Delta T^2 + 2373.5\Delta T^3$$

$$- 1950.9\Delta T^4 + 765.36\Delta T^5 - 117\Delta T^6 + 6\Delta T. \quad (3.1)$$

Figure 9 shows that equation (3.1) is very accurate and converges to (2.31) for very small ΔT. The total shear force acting on the indenter, F_s, is given by

$$F_s = \sum_{i=1}^{n} T_0(i), \quad (3.2)$$

where $T_0(i)$ denotes the shear force acting on the ith fibril and n is the total number of fibrils in Ω. It should be noted that, while fibrils inside Ω, obey the clamped–clamped boundary condition, the top of the fibrils in $\Omega-\Omega_e$ can rotate freely. However, there is no difficulty in computing T_0 for these fibrils. Indeed, the deformation of these fibrils can be obtained by replacing $L_0/2$ in (2.22) by L_0, $\Delta T/2$ in (2.23) by ΔT and $(L_0+\Delta N)/2$ in (2.24) by $L_0+\Delta N$.

We obtain $T_0(i)$ using the following procedure. First, we select three points on the shear force versus shear displacement curve in figure 1b. The coordinates of these points are A(0.0155 mm, 3.80 mN), B(0.0456 mm, 324 mN), and C(0.106 mm, 40.03 mN), respectively.

We select Ω with the condition that fibrils outside of Ω do not have measurable deflections. Once this is done, we measure the deflection for each fibril ($\Delta T(i)$) inside Ω. $\Delta T(i)$ in (3.1) is computed from $\Delta T(i)$ using $L=67 \mu m$. We then use (3.1) to obtain $T_0(i)$. To compute $T_0(i)$ from $T_0(i)$, we need the Young modulus and the moment of inertia I. We use a Young modulus of 3 MPa for PDMS, the fibril material. This modulus has been measured independently using an indentation test (see Norderer et al. 2007). The moment of inertia is $3.2 \times 10^{-3} (\mu m)^2$ since the fibrils in our experiments have a square cross section of 14 μm. The number of fibrils in Ω is 324. We then compute the indenter shear forces using

\[N = N_0 + F_N \]

\[M = I \theta \]

where N and M are the normal force and the moment of inertia, respectively. θ is the angular displacement at the fibril end. The dashed line is the BCM (2.31) for different applied normal loads. The result of figure 9 is represented as a relation-

\[J. R. Soc. Interface (2008) \]
They are 5.23 mN for point A, 11.22 mN for point B and 31.54 mN for point C. We also use the small-deflection theory (2.31) to compute these shear forces. They are 3.24 mN for point A, 3.75 mN for point B and 4.02 mN for point C. These results are shown in figure 10, which compares the experimental data (stage 1) with the large- and small-deflection results. As expected, the small-deflection theory works well for small shear displacements but considerably underestimates the shear force for large shear displacements. For example, near the peak load (e.g. point C), the use of the small-deflection theory underestimates the shear force by approximately an order of magnitude. Given the fact that we have used no adjustable parameters, the agreement between our large-deflection theory and the experimental data is quite good.

4. DISCUSSION AND CONCLUSION

The mechanical behaviour of fibrils under combined normal and shear loads underlies the response of biomimetic fibrillar arrays. Deformations are typically large compared with fibril dimensions. We have developed a nonlinear model to compute the deflection of fibrils in microfibril arrays subjected to normal and shear loads. To simplify the analysis, we have assumed that the fibrils do not twist. Also, we assume that the beam can undergo very large deflection but material behaviour is still linear.

Our model isolates a single fibril in the array to study its behaviour, whereas, in practice, the entire array is subjected to normal and shear loads. To illustrate how our model can be applied in this situation, we use our model to predict the shear force acting on a glass indenter in contact with an array of film-terminated fibrils. The computed shear forces are then compared with those obtained from the experiments. In the simulations, we have made the approximation that the normal force acting on all the fibrils is zero, which is strictly valid only for fibrils that are outside the contact zone. For fibrils inside the contact zone, some of the fibrils can be under tension (e.g. those close to the contact edge), whereas others can be under compression, hence our assumption is only approximately valid if the normal...
indentation force is very small in comparison with the shear forces, which is the case in our experiments. Nevertheless, the prediction of our nonlinear model is in reasonably good agreement with the experimental data. We should point out that there is some error in measuring the relative displacement of each fibril. Since the nonlinear theory is very sensitive to the relative shear displacement, it is not surprising that the nonlinear theory did worst for small deflections, where the relative error of the measurements can be large. Finally, there is no fitting parameter in our calculation.

Although our analysis is valid for any loading phase angle as well as for arbitrary aspect ratios, explicit results are presented for a particular aspect ratio. Also, we focus on the case where the normal load is zero. In general, there is no difficulty in generating results for other aspect ratios and different phase angles. Also, our model can be easily modified to describe the deformation of preoriented fibrils.

The model of fibril deformation studied in this work is quite general and can be used to study fibrillar structures other than our own. For example, it is applicable to a similar fibrillar structure (with angled fibrils) fabricated recently by Yao et al. (2007). It can also be used to analyse the shear deformation of fibrils with spatulated tips, such as those fabricated by Kim et al. (2007).

The analysis will be more complicated for the general case where the normal indentation force is significant. In this case, most of the fibrils inside the contact zone will be under compression except those near the edge. These edge fibrils will be under tension owing to adhesion. For this case, the normal and shear loads on each fibril in the array must be determined using the contact condition. This will be studied in a future work.

This work was supported by a grant from the Department of Energy under award number DE-FG02-07ER46463.

APPENDIX A. DERIVATION OF (2.22)–(2.24)

Substituting (2.13) into (2.12) gives

$$s = \sqrt{\frac{2A}{EI}} \int_{\phi_0}^{\phi} \sqrt{\frac{N_0 \cos \psi + T_0 \sin \psi}{1 + \frac{2A}{EI} (\sin \theta_{\text{max}} + \sin \psi)}} \, d\phi'.$$

(A 1)

Using (2.25a) and (2.25b), the terms inside the square root in (A 1) are

$$\frac{2A}{EI} (N_0 \cos \psi + T_0 \sin \psi) \frac{q}{1 + \frac{2A}{EI} (\sin \theta_{\text{max}} + \sin q)},$$

(A 2)

where

$$q \equiv (\theta_0 + \psi), \quad q_{\text{max}} \equiv (\theta_0 + \psi_{\text{max}}).$$

(A 3)

Since

$$\frac{2A}{EI} (\sin \theta_{\text{max}} - \sin q) = \frac{2A}{EI} (1 + \sin \theta_{\text{max}} - 1 - \sin q),$$

we can define a constant p by

$$2p^2 \equiv 1 + \sin \theta_{\text{max}} = 1 + \sin (\theta_0 + \psi_{\text{max}}).$$

(A 4)

Note that $0 \leq p \leq 1$. Also, introduce a new variable ϕ by

$$1 + \sin q \equiv 2p^2 \sin^2 \phi,$$

(A 5)

so that (A 4) is

$$\sqrt{\frac{2A}{EI}} (\sin \theta_{\text{max}} - \sin q) = \sqrt{\frac{A}{2p^2}} \cos \phi.$$

(A 6)

It is easy to verify that

$$d\psi = dq = \frac{2p \cos \phi \, d\phi}{\sqrt{1 - p^2 \sin^2 \phi}}.$$

(A 7)

Substituting (A 7) and (A 8) into (A 1), we have

$$s = \sqrt{\frac{EI}{A}} \int_{\phi_0}^{\phi} \sqrt{1 + \frac{2A}{EI} \sin \theta_{\text{max}} - \sin q}} \, d\phi'$$

(A 9)

where

$$\phi_0 = \sin^{-1} \left[\frac{1 + \sin \theta_0}{2p^2} \right].$$

(A 10)

Equations (A 5) and (A 6) imply that

$$\psi = \psi_{\text{max}} \Rightarrow q = \theta_{\text{max}} \Rightarrow \phi = \frac{\pi}{2}.$$

(A 11)

Thus, setting $\phi = \pi/2$ in (A 9) gives

$$L/2 = \sqrt{\frac{EI}{A}} \int_{\phi_0}^{\pi/2} \sqrt{1 + \frac{2A}{EI} \sin \theta_{\text{max}} - \sin q}} \, d\phi'$$

(A 12)

Equations (A 3) and (A 9) imply that

$$\frac{ds}{ds} = \sqrt{\frac{EI}{2A}} \sqrt{\sin \theta_{\text{max}} - \sin q}$$

(A 13)

so (2.21a) is

$$\frac{(L_0 + A_N)}{2} = \sqrt{\frac{EI}{2A}} \int_{\phi_0}^{\phi_{\text{max}}} \frac{\cos (q - \theta_0) \, dq}{\sqrt{\sin \theta_{\text{max}} - \sin q}},$$

(A 14)

which is (2.24). Equation (A 14) can be rewritten as

$$\frac{(L_0 + A_N)}{2} = \sqrt{\frac{EI}{2A}} \begin{cases} \int_{\phi_0}^{\phi_{\text{max}}} \frac{\cos q \, dq}{\sqrt{\sin \theta_{\text{max}} - \sin q}} \\ \int_{\phi_0}^{\phi_{\text{max}}} \frac{\sin q \, dq}{\sqrt{\sin \theta_{\text{max}} - \sin q}} \end{cases}.$$

(A 15)

The first integral in (A 15) can be integrated exactly, i.e.

$$\int_{\phi_0}^{\phi_{\text{max}}} \frac{\cos q \, dq}{\sqrt{\sin \theta_{\text{max}} - \sin q}} = 2 \sqrt{\sin (\theta_0 + \psi_{\text{max}}) - \sin \theta_0}.$$

(A 16)
The second integral can be expressed in terms of elliptic functions using (A 5)–(A 7)
\[
\int_{\theta_0}^{\psi_{\text{max}}} \frac{\sin q \, dq}{\sqrt{(\sin q_{\text{max}} - \sin q)}} = \sqrt{2}[-2E(p) + 2E(\phi_0, p) + K(p) - F(\phi_0, p)], \quad (A 17)
\]
where
\[
F(\phi_0, p) \equiv \int_{\theta_0}^{\phi_0} \frac{1}{\sqrt{1 - p^2 \sin^2 \phi}} \, d\phi \quad (A 18)
\]
is the incomplete elliptic integral of the first kind;
\[
K(p) = F(\pi/2, p)
\]
is the complete elliptic integral of the first kind;
\[
E(\phi_0, p) = \int_{\theta_0}^{\phi_0} \sqrt{1 - p^2 \sin^2 \phi} \, d\phi
\]
is the incomplete elliptic integral of the second kind; and
\[
E(p) = E(\pi/2, p)
\]
is the complete elliptic integral of the second kind. Using (A 16) and (A 17), (A 14) becomes
\[
\frac{(L_0 + \Delta N)}{2} = \sqrt{\frac{EI}{A}} \int_{\theta_0}^{\psi_{\text{max}}} (\sin \theta - \theta_0)\frac{d\theta}{\sin q_{\text{max}} - \sin q}, \quad (A 20)
\]
Likewise, (2.23) can be obtained by substituting (A 13) into (2.21b),
\[
\Delta_T/2 = \int_{0}^{L/2} \sin \psi'(s') \, ds'
\]
\[
= \sqrt{\frac{EI}{2A}} \int_{\theta_0}^{\psi_{\text{max}}} \frac{\sin(q - \theta_0)}{\sin q_{\text{max}} - \sin q} \, dq, \quad (A 21)
\]
In exactly the same way, (A 21) becomes
\[
\Delta_T/2 = \sqrt{\frac{EI}{A}} \int_{\theta_0}^{\psi_{\text{max}}} (\cos \theta_0 - \cos \theta) - \sin \theta_0 - \cos \theta_0 \, dq, \quad (A 22)
\]
Using (A 2) and (A 13), (2.20) becomes
\[
\int_{\theta_0}^{\psi_{\text{max}}} \frac{d\theta}{(1 + cA \sin q) \sqrt{\sin q_{\text{max}} - \sin q}} = L_0/2, \quad (A 23a)
\]
Equation (2.23a) can be expressed in terms of incomplete elliptic integral of the third kind,
\[
\Pi(n; \phi, k), \quad i.e.
\]
\[
\int_{\theta_0}^{\psi_{\text{max}}} \frac{d\theta}{1 + \cosh^2 \theta} = L_0/2, \quad (A 23b)
\]
where
\[
\Pi(n; \phi, k) = \int_{\theta_0}^{\phi} \frac{d\theta}{(1 - n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}}.
\]

APPENDIX B. SMALL-ANGLE APPROXIMATION (SMALL-DEFLECTION APPROXIMATION)

Assuming \(\psi\) is small, (2.10) can be approximated at
\[
\frac{d\psi}{ds} \approx \sqrt{-\frac{2}{EI} (N_0 + T_0 \psi(s)) + D}, \quad 0 < s < L/2. \quad (B 1)
\]
Substituting \(D = 2/EI(N_0 \cos \psi_{\text{max}} + T_0 \sin \psi_{\text{max}})\) into (B 1) and integrating, we have
\[
s = \sqrt{\frac{2EI}{T_0}} \int_{0}^{\psi} \frac{d\psi'}{\sqrt{\psi_{\text{max}} - \psi'}}, \quad \psi_{\text{max}} > \psi, \quad (B 2)
\]
or
\[
\psi = \psi_{\text{max}} - \left[\sqrt{\frac{T_0}{2EI} s - \psi_{\text{max}}}\right]^2. \quad (B 3)
\]
Using (2.10) and (2.11) and the fact that \((d\psi/ds) = 0\) at \(\psi = \psi_{\text{max}}\), we have
\[
-\frac{2}{EI} (N_0 + T_0 \psi_{\text{max}}) + D = 0
\]
\[
\Rightarrow -\frac{2}{EI} T_0 \psi_{\text{max}} + \left[\frac{M_0}{EI}\right]^2 = 0 \Rightarrow \psi_{\text{max}} = \frac{1}{2T_0} \left[\frac{M_0^2}{EI}\right]. \quad (B 4)
\]
Since \(\psi = \psi_{\text{max}}\) when \(s = L/2\), (B 3) implies that
\[
\psi_{\text{max}} = \frac{T_0L^2}{8EI}. \quad (B 5)
\]
Using (B 4), we have
\[
M_0 = -\frac{T_0L}{2}. \quad (B 6)
\]
Combining (B 3) and (B 5) gives
\[
\psi = \frac{T_0}{2EI} \psi(L - s). \quad (B 7)
\]
Using (B 5), the small-deflection version of (2.21b) is
\[
\Delta_T/2 \approx \int_{0}^{L/2} \psi'(s') \, ds' = \frac{T_0L^3}{24EI}. \quad (B 8)
\]
The normalized form of (B 8) is (2.31) using \(L = L_0\),
\[
\Delta_T = \frac{1}{6} T_0. \quad (B 9)
\]
To determine the relationship between normal displacement and normal load for small deflections, we approximate (2.20) by assuming that the slope is small, so that \(\psi \approx y', ds \approx dx, i.e.
\[
\int_{0}^{L/2} \frac{dx}{1 + c[N_0 + T_0 y']} = L_0/2. \quad (B 10)
\]
Consistent with small deflections, we assume
\[
cT_0y'/(1 + cN_0) \ll 1. \quad (B 11)
\]
The integral in (B 10) can be written as
\[
\int_0^{L/2} \frac{dx}{1 + cN_0} \left(1 + \frac{cT_0 y}{(1 + cN_0)}\right) \approx \frac{1}{(1 + cN_0)}
\]
\[
\int_0^{L/2} \left[1 - \frac{cT_0 y}{(1 + cN_0)}\right] dx = \frac{1}{(1 + cN_0)} \left[\frac{L}{2} - \frac{cT_0 \Delta T}{2(1 + cN_0)}\right]
\]
where we have used
\[
\int_0^{L/2} y' dx = y(L/2) = \Delta T/2.
\]
Using (B 12) and (B 13), (B 10) becomes
\[
\Delta_n = \frac{cT_0 \Delta T}{(1 + cN_0)} = L_0 cN_0,
\]
where \(L \approx L_0 + \Delta_n\). Equation (2.32) is obtained by substituting (B 9) into (B 14), i.e.
\[
\Delta_n = L_0 cN_0 + \frac{12cEI \Delta T^2}{L^3(1 + cN_0)}.
\]

REFERENCES

Peressadko, A. & Gorb, S. N. 2004 When less is more: experimental evidence for tenacity enhancement by division of contact area. J. Adhes. 80, 247–261. (doi:10.1080/0021863049030199)

Strongly enhanced static friction using a film-terminated

Spolenak, R., Gorb, S. & Arzt, E. 2005a Adhesion design
maps for bio-inspired attachment systems. Acta Biomater.
1, 5–13. (doi:10.1016/j.actbio.2004.08.004)

Spolenak, R., Gorb, S., Gao, H. & Arzt, E. 2005b Effects
of contact shape on the scaling of biological attachments.

Tang, T., Hui, C.-Y. & Glassmaker, N. J. 2005 Can a fibrillar
interface be stronger and tougher than a non-fibrillar one?

Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B.,
Adhesion and friction in gecko toe attachment and detach-

Timoshenko, S. P. & Gere, J. M. 1961 Theory of elastic

Varenberg, M. & Gorb, S. 2007 Shearing of fibrillar adhesive
microstructure: friction and shear-related changes in pull-
2007.0222)

Yao, H. & Gao, H. 2006 Mechanics of robust and releasable
adhesion in biology: bottom-up designed hierarchical
(doi:10.1016/j.jmps.2006.01.002)

Yao, H., Della Rocca, G., Guduru, P. R. & Gao, H. 2007
Adhesion and sliding response of a biologically inspired
fibrillar surface: experimental observations. J. R. Soc.

Yurdumakan, B., Ravavikar, N. R., Ajayan, P. M. & Dhinojwala, A. 2005 Synthetic gecko foothairs from
multiwalled carbon nanotubes. Chem. Commun. 30,
3799–3801. (doi:10.1039/b506047h)