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Figure 1. (a,b) The spatial extent of the two metropolitan areas considered here. Note that the Greater London area (a) is not covered by the underground system,
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p
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vectorial map extracted in ArchMap environment and assembled with Adobe Illustrator.) (Online version in colour.)
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(ii) the local outreach and the urban horizon, and (iii) the spatial

distribution of betweenness centrality (BC). It is important to

stress that studies on urban transportation networks have

important implications for urban policies and private invest-

ment, and, in general, play an important role in the urban

planning chain. In fact, inter-modality transportation efficiency

and simulations have been extensively studied in the

transportation engineering literature [39], where the typical

supply–demand approach prevails but where the analysis of

topological properties of networks is almost wholly neglected

and where the different transportation modes are often treated

separately. One goal in this study is to shift the focus onto this

topological coupling aspect of transportation network design:

we show this to be extremely relevant, and suggest that the

multilayer network view of these systems should be integrated

into elaborated models of urban planning.
2. Data and network construction
Using data from Open Street Map (http://www.openstreetmap.

org/ (accessed on 8 December 2014)), we construct both the

street and the subway networks for London (UK) and

New York City (USA). We downloaded data on street and

underground networks in geo-referenced vectorial format

from Open Street Map, which contains detailed streets and

rail tracks networks, including train depots and double

tracks. (The rationale behind the geographical extent of these

networks is to include the full underground systems and sur-

rounding street networks.) In addition, a series of automatic

and manual topological cleaning operations were needed in

order to extract consistent and usable graphs. The size and

geography of the two cities are clearly different as we can

observe it in figure 1a,b.

We thus obtained the weighted graph Gs ¼ ðVs, EsÞ of the

connected street network in its ‘primal’ representation, with

nodes being street junctions and edges representing the street

segments connecting them, and the weights given by the

street length. Similarly, we obtained the connected under-

ground network Gu ¼ ðVu, VuÞ with nodes representing
underground stations and links connecting successive stations

on the same line, and weighted by the length of the line seg-

ment. From a theoretical point of view, the interdependent or

multilayer [31] network, Gmulti is defined as the union of

these two networks. Here, we have subway stations and road

intersections that we consider to be different nodes. Under-

ground stations are accessible from more than one access on

the street, but for the sake of simplicity we construct the multi-

layer network by connecting each underground station to its

closest street junction only (a simplification that would not

change the structure of quickest paths). In order to create the

adjacency lists, we used a combination of Python scripts, Arch-

Map geo-tools (ArchGIS 10.2) and ad hoc manual corrections.

Tools have been set to remove link redundancies, to correct

the topology of the networks and to create the proximity

matrix between street nodes (street junctions) and underground

nodes (stations). The scripts have been corroborated with a full

check of the data and corrections of the topology in editing ses-

sions in the ArchMap environment (the computation of the

various statistical measures have been done in the Python

environment using NetworkX library and the maps have

been produced using ArchGIS v. 10.2).
3. The generic nature of quickest paths
New York is composed of two large and almost disconnected

components with the underground systems covering a simi-

lar spatial extent and carving-up the different boroughs.

London instead presents—at a large scale—a typical radio-

centric urban structure with the underground systems

connecting satellite districts and peripheries to the urban

core. Differences both in size and geography between these

cities are also reflected by basic network descriptors shown

in table 1. For both cities, the (spatial) diameter of the multi-

plex is essentially dominated by the street network. We also

observe that the topological diameter of the multiplex is

lower than the street layer, thanks to the subway structure

allowing for topologically shorter paths. The efficiency of

the subway is however also due to its speed which is in

http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://rsif.royalsocietypublishing.org/


Table 1. The number of nodes N, the number of links M, the cost defined as the total length of all links, the average geographical and topological shortest
path length, l

geo
ij (km) and l

topo
ij , respectively; the maximum geographical and topological shortest path length, Dgeo (km) and Dtopo, respectively; the density of

streets rs ¼ Ns=A and the density of underground stations ru ¼ Nu=A, where A is the area of each city.

case N M
total
length (km) l

geo
ij ðkmÞ l

topo
ij

Diamgeo

(km) Diamtopo
ffiffiffi
A
p
ðkmÞ

node density
(km – 2)

London streets 324 536 427 920 34 493.73 25.83 178.16 89.31 368 73.68 59.78

London tube 263 296 385.98 18.55 14.26 60.3 42 — 0.048

London multi 324 799 428 479 34 886.52 25.78 96.16 89.27 288 — —

New York streets 68 417 112 827 12 153.81 17.94 106.64 55.18 278 34.93 56.07

New York subway 454 489 416.12 18.87 19.10 57.28 62 — 0.37

New York multi 68 871 113 770 12 579.44 17.91 54.45 55.18 205 — —
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general larger than that of overground modes, such as private

cars, taxis or buses. In order to reflect this, we introduce a

parameter 0 , b � 1 that describes the ratio of speeds in

both systems, similar to the theoretical analysis proposed in

[37]. This parameter b measures the travel cost in time units

associated with the underground links. This means that the

number of time units taken to traverse an underground link

of length l metres is bl, which is 1/b times faster than the

time taken to traverse the same length on the street network.

Thus, a smaller b corresponds to a faster underground speed,

when compared with the speed on the street network. The

introduction of this parameter allows us to study the properties

of the multilayer system as a function of underground speed.

Naively, one could expect that the system as a whole will be

more efficient for faster subways, but we will show here that

it is not always the case and that in some cases we can observe

an optimal value for b. Finally, b can be measured empirically,

and we obtain for London bLondon � 0:48 and a slightly larger

value for NY bNYC � 0:55:

We denote by tsði, jÞ the travel cost (i.e. the number of time

units) of the quickest path between street nodes i, j [ Vs and by

tmði, jÞ the cost of the quickest path between i and j in the multi-

layer network (i.e. a path that can traverse both street and
underground links). The normalized quantity

zbðtmÞ ¼
tm � ktmlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðtmÞ
p ð3:1Þ

follows a distribution that is roughly constant for b larger than

0.2–0.3, as shown in figure 1c, demonstrating that the effect of

b, is essentially contained in the average and variance of tm:

This is a rather surprising result, given that the two cities dis-

play many geographical and structural differences. The cost

tmði, jÞ between nodes i and j can be written as

tmði, jÞ ¼
X

e[Pði,jÞ
tðeÞ, ð3:2Þ

where the sum is over all links e that belong to the quickest path

P(i, j) and where tðeÞ is the cost on this link. (We neglect inter-

modal change costs in this simple argument.) If the path is long

enough, and if the random variables tðeÞ do not display long-

range correlations and are not broadly distributed, the central

limit theorem applies and the distribution of the tm follows a

Gaussian distribution in a certain range. There are obviously

deviations observed for small values of b coming from the

fact that the paths’ durations become very heterogeneous
depending on the proximity of their origin or destination to

subway stations. In this respect, a very high relative subway

velocity enhances spatial differences in the city and may lead

to an uneven distribution of accessibility, a fact that will be

confirmed below with the local outreach analysis.

We also compute the average ratio between the travel

costs from i to other street nodes through the multilayer

network and through the street network, defined as

qmsðiÞ ¼
1

Ns � 1

X

j[Vs

tmði, jÞ
tsði, jÞ , ð3:3Þ

where Ns is the number of street nodes. The larger this ratio,

the larger the effect of the underground on travel costs. We

see in figure 1d that typical values are of the order of 0.5

for both cities and that the effect of b is rather weak: a

decrease from b ¼ 1 to 0.5 leads to a decrease in kqmsl of

the order of 20%. In addition, it seems that the effect of

subways in London is less important than in New York,

which is probably due to the lesser extent of the subway in

the Greater London area.

A central quantity for describing the importance of inter-

modality is given by

lði, jÞ ¼
smulti

i,j

si,j
, ð3:4Þ

where si,j is the total number of shortest paths between i and j
(using either one or two networks), and smulti

i,j the number of

paths using edges of both networks at least once. It character-

izes the importance of multi-modality for the path from i to j.
If we sum over all possible destination nodes j, we can quan-

tify the added value of the interlayer coupling to the

reachability of nodes, and obtain the interdependency [37]

of a street node i [ Vs defined as

lðiÞ ¼ 1

Ns

X

j[Vs

smulti
i,j

si,j
, ð3:5Þ

(Note that a similar measure has been used in the transpor-

tation design literature under the name of inter-modal
connectivity [39].) In order to understand the effect of scale

on the interdependence, we also define the interdependence

profile as

QlðdÞ ¼
1

NðdÞ
X

i,j[Vs

deði,jÞ¼d

lði, jÞ, ð3:6Þ
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where deði, jÞ is the Euclidean distance between i and j and

N(d ) is the number of pairs of nodes at Euclidean distance

d. In figure 2a, we show the average interdependence

among all street nodes as a function of b and the resulting

interdependence profile figure 2b.

We see from these figures that, in both cities, the existence

of the underground has a very large impact. For example, for

b ¼ 0.8 we obtain l around 0.7, meaning that even when the

underground is only 1.25 times faster than the street network,

already about 70% of the quickest paths are going through

the underground. A slight decrease in b for b close to one

thus has a large impact on the structure of the quickest

paths, while for smaller values of b, improving the subway

speed does not bring a significant improvement of the quick-

est paths. In both cities, there is a sharp increase in l for small

Euclidian distances, meaning that already for relatively short

trips, it is worth ‘hopping on’ to the underground. (Note that

we neglect here waiting, walking and connecting times which

can be significant [38].) The slope of the interdependence pro-

file at small deucl ≃ 0 is increasing as b is decreasing,

suggesting that a slight increase in the underground speed

could make the networks highly interdependent even at

very small scales.

Both cities therefore display a remarkably similar behav-

iour over all these interdependency-related quantities (in

particular, see figure 2b), suggesting here again a possible

common behaviour for multiplex transportation networks

in cities. While further studies are needed to substantiate a

claim of ‘universality’, our results point to the possible exist-

ence of some kind of statistical law of large numbers that
applies to quickest paths in multiplex urban transportation

networks.

We note that it is not trivial that the central limit theorem

applies here, and it does not mean that the network topology

is irrelevant. The fact that we can sum a large number of

quantities, which are essentially uncorrelated (a necessary

condition for the central limit theorem to apply) comes

from the specific structure of these transportation systems

(spatial constraints for example certainly play an important

role). In addition, more complex quantities (such as the inter-

dependence for example) also display a high level of

similarity for the two cities, a fact that cannot at this stage

be simply related to a central limit theorem. These different

results point to the potentially useful fact that actually

few parameters seem to govern the behaviour of these quan-

tities, which could lead to many useful simplifications in

more elaborated models that contain a large number

of parameters.
4. Local outreach and the urban spatial horizon
The presence of a transportation mode such as a subway

affects the overall performance of a city in terms of efficiency

of transport and the accessibility of certain locations, but also

has an important impact on how pairs of locations are

connected. In order to measure this effect, we define the

spatial outreach of a street node i [ Vstreet as the average Eucli-

dean distance from i to all other street nodes that are

reachable within a given travel cost, t:

LtðiÞ ¼
1

NðtÞ
X

jjtmði,jÞ,t

deði, jÞ, ð4:1Þ

where deði, jÞ is the Euclidean distance between node i and j,
and NðtÞ is the number of nodes reachable on the multilayer

http://rsif.royalsocietypublishing.org/
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network within a given travel cost t. In figure 3, we show

the average local outreach as a function of the travel cost

threshold t, which displays a nonlinear behaviour due to

the different speeds achievable in the two transportation

modes. This provides support for a general effect that is

already known: for longer trips, faster transportation modes

are used (see for example [38] the UK case).

For New York, the unit of time is given by the average car

speed on the street network which is 15.6 km h21 (e.g. [40]).

Rescaling t by this velocity, we then obtain an effective maxi-

mum speed (for b ¼ 0.1) of 30 km h21 (close to the 28 km h21

discussed in [41]). For London, the same calculation with an

average car speed of 16 km h21 (see Transport for London,

http://www.tfl.gov.uk/ (accessed on 8 December 2014))

yields an effective maximum speed of 21 km h21. (This differ-

ence in speeds is due to the areas considered, as New York is

almost entirely covered by the underground network.)

As shown in figure 4a,b,d,e as b decreases, the nodes having

a high local outreach are concentrated close to underground

stations where the underground is the most accessible, and

the graph consisting of high-outreach nodes (red nodes on

the map) becomes less fragmented. In other words, as the

underground becomes faster, a continuous area of high-

outreach nodes emerges (the commutable zone) in the city

centre and around the nodes of the underground network,

implying that a person can travel from this area to faraway

places (large Euclidean distance) at a small travel cost t. The

location of this highly accessible zone cluster from a dispersed

configuration (as in figure 4d ) to a centralized one (as in

figure 4a) which shows a centralization effect due to the acces-

sibility provided by the underground. The dispersion of the

local outreach also displays a very interesting result demon-

strated by its Gini coefficient GL [ ½0, 1�: Indeed, in

figure 4e,f we see that for both cities for b . 0.5 the accessibil-

ity is distributed almost uniformly among all the places in
the cities, while for smaller b (faster underground) the

shift to an uneven distribution of accessibility is clear. This

result suggests that transportation policies that focus on

increasing the speed on a single travel modality may lead to

undesirable spatial heterogeneity in the accessibility of

different locations.

We show in figure 5 the probability that the outreach is

larger than a certain fraction aL of the size of the city, and

we observe the existence of a threshold ac. The existence of

a threshold less than one means that, for given values of b

and t, there is a maximal value Lm for the outreach. We can

estimate the value of Lm by using a simple argument: the

maximum value is reached when the path is ‘essentially’

made on the quickest transportation mode, the subway.

This transportation mode has a velocity given by v/b, and

the probability that a station is within reach (in a circle of

radius d0 corresponding to the typical walking distance to

reach the subway) is

p ¼ rupd2
0, ð4:2Þ

where ru ¼ Nu=A is the density of subway station (A ¼ L2 is

the area of the city and Nu is the number of subway stations).

The maximal outreach Lm is then given by

Lm ¼
Nu

L2
pd2

0

v
b
t, ð4:3Þ

and ac ¼ Lm=L is then given by

ac ¼
Nu

L3
pd2

0v
t

b
: ð4:4Þ

This last equation shows in particular that the quantity

acL3=Nu should increase linearly with t=b, with a constant

of proportionality depending on the geometry of the city,

and we observe that this scaling is in agreement with

http://www.tfl.gov.uk/
http://www.tfl.gov.uk/
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simulations (figure 5c,d ). In particular, we see that the

slopes for London and New York are different: the ratio

of the constant pre-factors is about 10, suggesting

that the subway system in London is more efficient in

terms of the outreach that can used as a measure of the

‘urban horizon’.
5. The geography and distribution of urban
centrality

The BC [42] is one of the important quantities in complex

networks, and in street networks in particular [8]. It quan-

tifies the importance of a node as being the amount of

traffic going through it, assuming uniform demand where

the traffic between all pairs of nodes is the same. This

quantity is very relevant in urban systems: in particular,

it is correlated with the locations of shops and other

micro-economic activity [22,23], urban growth [19,20] and

land-use intensity [43].

In the case of car traffic and congestion, the absence of

detailed traffic models or mobility data leads us to use the

BC in order to identify the potentially congested locations

and the effects of spatial structure on the shortest path struc-

ture. Even if we know that the assumptions used in the BC

calculation can lead to some inaccuracies [44], it is the

simplest proxy that contains some level of information

about real traffic. We thus explore in this section the spatial

distribution of BC in the street network and how it is affected

by the underground system. The BC of a street node v [ Vs in

the street network is defined as

bcsðvÞ ¼
1

ðNs � 1ÞðNs � 2Þ
X

i,j[Vs

sstreet
i,j ðvÞ
sstreet

i,j
, ð5:1Þ

where sstreet
i,j is the number of quickest paths between i and j

in the street network, of which sstreet
i,j ðvÞ goes through street

node v. Similarly, we define the BC of a street node v [ Vs

in the multilayer network as

bcmðvÞ ¼
1

ðNs � 1ÞðNs � 2Þ
X

i,j[Vs

smulti
i,j ðvÞ
smulti

i,j

, ð5:2Þ

where smulti
i,j is the number of quickest paths between i and j

in the multilayer network, of them smulti
i,j ðvÞ goes through

street node v.

We can then observe how the parameter b impacts the

mobility distribution and the geography of potentially con-

gested areas. The maps in figure 6a–d show the BC spatial

distribution for both cities computed on streets for b ¼ 1

(a,b) and b ¼ 0.1 (b,c). These maps clearly display a dramatic

change in the spatial distribution of central places when intro-

ducing an underground system, shifting congestion from

internal street routes and bridges to inter-modal places

located at the terminal points of the underground networks,

which presumably are used as entry/exit gates for sub-

urban flows to reach core urban areas. Remarkably

enough, in both cities, these places are located in urban

areas that do not overlap with the underground system,

thus possibly creating congestion in unexpected places. In

other words, the introduction of underground networks

operate as a decentralizing force creating congestion in

places located at the ends of underground lines and not,

for example, in the city centre as one might expect referring

to classical results on rewiring processes for chain or lattice

networks [1] in which BC is correlated with the distance to

the gravitational centre. The statistical dispersion of BC can

be measured by its Gini coefficient and also suggests that

congested places always become more critical in the

system as b decreases. In fact, as shown in figure 6, the

Gini coefficient of BC increases as the underground

http://rsif.royalsocietypublishing.org/
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dependency l as a function of the dispersion of the multilayer BC can be
measured by the Gini coefficient GB for the BC. (Online version in colour.)
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becomes more efficient (faster, decreasing b), meaning that

a larger fraction of quickest paths use it; and the BC distri-

bution is less homogeneous, making the system more

fragmented and less resilient.
Examining the BC Gini as a function of b and the interde-

pendency l in London (figure 7), we observe a non-trivial

optimal value for b for which flows are the most homoge-

neously distributed across street junctions. In New York

(figure 7b), however, there seem to be room for small b and

small congestion and the absence of a non-trivial optimum

for New York suggests (as discussed theoretically in [37])

that—surprisingly—it has a more marked monocentric

aspect than London. In other words, the congestion in central

places in New York is so large that introducing an efficient

subway system is always better, even if it creates congestion

at other points. Remarkably, these results on the BC and on

the existence of an optimal point are thus in agreement

with a recent theoretical model of coupled transportation net-

works, where—depending on the distribution of trip

targets—two regimes were observed: one in which the opti-

mal coupling is trivially the maximum, and another where

a non-trivial optimal coupling exists [37].
6. Discussion
We have considered the effect of the coupling between two

transportation layers on various quantities and we can sum-

marize our results as follows. For quantities relating to

quickest paths (interdependency, average quickest path dur-

ation), we observe a remarkable similarity between the two

cities considered, suggesting the possibility of a universal

behaviour requiring further study. This universality might

originate in the fact that the quickest path can be seen as a

sum of random variables, which inevitably leads to some

sort of central limit theorem. This seems to be the case for

the probability distribution of the quickest path time






