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movements by smaller groups must be acknowledged to cap-
ture structure relevant to the dynamics of transmission [6-9]
and the uniqueness of exposures of those different groups
[10]. Different types of movement over different time scales
must also be considered. Migratory and seasonal movements
are likely important for circulation over broad regions and
time scales, whereas commuting patterns and other routine
movements give rise to the structure of contacts on which
epidemics spread [1,11].

For modelling movement at fine spatial scales, such as
within cities, many models (e.g. [12—14]) focus on scales no
finer than several hundred square metres, or the area covered
by a mobile phone tower, because that represents the finest
scale at which an individual’s presence can be deduced
with mobile phone call records. In certain locations, however,
data informative of an individual’s whereabouts at finer
scales could be used to motivate and parametrize models at
the scale of buildings or lots [15,16]. An existing conceptual
framework for modelling movement at this scale is that of
an individual’s activity space, which is defined as ‘the
subset of all urban locations with which the individual has
direct contact as the result of day-to-day activities” [17].

Modelling the composition of activity spaces and move-
ment within them is essential for any simulation of synthetic
human populations in an urban environment. Such simu-
lations are of high utility for a number of applications in
infectious disease epidemiology, including planning for the
containment of influenza or smallpox outbreaks [18-21] and
evaluating the efficacy of a putative dengue vaccine [22,23].
Although these and other applications are of relevance to
cities in the developing world, the development of algorithms
for simulating the composition and dynamics of activity spaces
has focused primarily on cities in North America and Europe.
Furthermore, simulation models of human activity spaces typi-
cally focus on details that, while important for applications in
transportation [24], may be unnecessarily complex for appli-
cation to the epidemiology of many infectious diseases [15].
Still other models are capable of simulating movement and
time allocation within an activity space (e.g. [25,26]), but pro-
vide no basis for simulating which locations comprise the
activity space. A generalizable framework that can be parame-
trized with readily attainable data and that can be used to
simulate activity space composition and time allocation in a
variety of geographical contexts is therefore needed.

To address this need, we developed a modelling framework
that integrates five distinct aspects of movement—i.e. number
of locations in the activity space, location type and distance
from home of locations in the activity space, and frequency and
duration of visits to those locations—to generate a cohesive
description of time allocation within an individual’s activity
space. This framework allows for simulation of locations compris-
ing the activity space and parameters that govern a stochastic
process of movement between pairs of locations within the
activity space. Together, this results in a description of how
the individual allocates time across the activity space. To demon-
strate the utility of this framework, we fita model of activity space
composition and time allocation to data from retrospective inter-
views of 157 residents of the city of Iquitos in northeastern Peru.
Using these data, we selected among candidate models with
varying levels of detail about location type and distance from
home, and we used simulations of the best-supported model
(e.g. figure 1) to assess the model’s ability to reproduce empirical
patterns of time allocation in the study population.

2. Material and methods

2.1. Modelling framework

2.1.1. Activity space composition

The first mathematical characteristic of an individual’s activity
space that we define is that it is comprised of locations belonging
to m different classes, each of which is distinguished by how long
locations of that class tend to remain in the individual’s activity
space. For example, many people likely have some locations that
they visit routinely (e.g. relatives” houses) as well as some that
they do not visit as a matter of routine (e.g. repair shops, air-
ports). We posit that routine locations remain in one’s activity
space for long periods of time, whereas irregular locations
come and go from the individual’s activity space over time.
Each such class i is defined by a constant rate A; at which new
locations are added to it and a constant rate u; at which a location
of that class is removed from the activity space (figure 2a). If we
assume that locations in each class are removed from the activity
space in the same order in which they were added to it, then each
class within an individual’s activity space can be modelled as a
queue (of M/M/1 type [27]). This convenience means that we
can directly calculate some key characteristics of the dynamics
of each class, including the stationary distribution of the
number of locations of each class in the activity space (geometric
with parameter p; = 1—A;/ ;) [27, pp. 548-552]. The stationary
distribution of the number of locations across all classes in the
activity space is thus a sum of m geometric random variables.
In the event that m is finite, the stationary distribution of activity
space size follows a negative binomial distribution with par-
ameters m and p if all p; = p. If there is a very large number of
classes (i.e. as m — o), the stationary distribution of activity
space size is a Poisson distribution with parameter mp. Finally,
in the trivial case with only a single class, the stationary distri-
bution of activity space size is geometrically distributed with
parameter p.

2.1.2. Time allocation within the activity space

Because there is potential for locations to be added to or remo-
ved from the activity space at any time, we complement the
continuous-time process of activity space turnover with a continu-
ous-time process of movement by an individual within her or his
activity space. A simple and general way to model this movement
process is with a continuous-time, finite-state Markov process
(figure 2b), similar to how geographers have modelled trip behav-
iour [28,29]. Under such a formulation, the set of n locations in an
individual’s activity space comprise the states among which an indi-
vidual moves about according to the n x 1 rate matrix Q [27, p. 396].
Each off-diagonal element g;,; of Q represents the instantaneous prob-
ability that an individual moves from location 7 to location j, and
the elements of this matrix are stipulated to satisfy the condition
that g;; =—> " +; g;;- Characteristics of a movement process obeying
these dynamics include that the durations of visits to each location i
are exponentially distributed with mean —1/g;; and that the station-
ary distribution 7, which is a vector containing the long-term
average proportion of one’s time spent at each location, satisfies

mQ = 0[27, pp. 395 and 398].

2.2. Model refinements

Applying this framework to specific populations requires speci-
fying which locations are included in an individual’s activity
space and how an individual spends time at and moves among
those locations. Here, we investigated two primary character-
istics of locations—location type and distance from home—that
affect whether individuals visit those locations and if so how
frequently and for how long they visit (table 1).
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Figure 1. Example of an individual’s activity space and the proportion of the individual’s time spent at each location, simulated with the fitted model. (Online

version in colour.)
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Figure 2. Model schematic. (a) Snapshot of an individual’s activity space at a given point in time, with the individual’s home on the bottom, a relatively permanent
class above it, an intermediate class above that, and a relatively transient class at the top, with classes separated by thick lines. The composition of each class is
governed by an M/M/1 queue with ‘birth’ rate \; and ‘death’ rate ;. Different colours indicate different location types (e.g. houses, shops, parks), which are distinct
from the permanent, intermediate and transient location classes. (b) An individual's whereabouts over time, with a single example in black and 500 replicates in
faint colours. On average, the overall proportion of time spent at each location tends to the distribution 77. (Online version in colour.)

2.2.1. Location types

Given some way of classifying locations according to T types,
such as residential or commercial, we propose that whenever a
new location is added to one’s activity space it has a probability
p. of being a location of type 7, where ) p, = 1. Consequently,
the number of locations of each type in an activity space com-
prised of n locations is a multinomial random variable with
parameters n and p = {p5, ..., p~ ). These location types are
not necessarily the same as the location classes. Rather, we
envision location types as readily distinguishable based on
observable characteristics (e.g. houses, schools) and location
classes as defined solely by the extent of their transience in

one’s activity space (e.g. a workplace and a market could
belong to the same class).

2.2.2. Distance from home

We also consider the possibility that individuals tend to display a
preference for locations that are closer to their homes. To investi-
gate this possibility, we must first consider how far away
locations of a certain type are from one’s home. If an individual
chooses locations randomly with respect to distance from home,
then distances at which more locations of a given type are pre-
sent would be more likely to be chosen. Thus, we must first
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Table 1. Summary of model components, model subcomponents and how variation in each is represented probabilistically in the best-supported model.

model component

locations visited number of locations

locations of a given type
locations of a given distance

time allocation frequency of visits

duration of visits

account for the distribution p(§; 7) of locations of type 7 at various
distances 6 and then determine whether the realized distribution
of locations visited is weighted in favour of those closer to home.
We do so with a weighting function of the form

exp(— 1, 8™), @.1)

which is similar to an exponential distribution with rate u but
with an additional parameter 7 to allow for more flexibility to
weight locations very close to home more strongly. Once the dis-
tance from home of a new location is determined, we select a
specific location randomly from all locations of a given type 7
at that distance. We furthermore consider the possibility that
different location types have different weighting functions, as
determined by the parameters w, and 7,.

2.2.3. Time allocation

To determine how individuals allocate time across locations in
their activity spaces, we assign each individual a frequency of
visits, f;, and a mean duration of each visit, d;, to each location
i in the activity space. The collection of all f; and d; for
i€1,...,nis then used to populate the matrix Q. Because the
diagonal entries of Q are directly related to the mean duration
of visits to each location, these entries are defined simply as
gii=—1/d;. To populate the off-diagonal entries of Q, which
describe movements between locations, we herein make the
simplifying assumption that consecutive movements are uncor-
related and proportional to the frequency at which an
individual visits each location, such that

ot
! diZ/‘#ifj

To select f; and d; for different individual-location pairs, we
model these parameters as bivariate normal random variables
on a natural log scale with means u, and u,,, standard devi-
ations oy, and 0y, and correlation p,. Moreover, we consider
the possibility that the means and standard deviations differ
for different location types and that the means depend on
distance from home according to the function

1 ab exp(cd)

W) = 5t (o)

22)

2.3)

This function is defined such that the mean frequency or duration of
visits on a natural log scale to a location of a given type Tapproaches
(1/2)a(1 4 b) near home and (1/2)a as c6 — — co. Finally, we assume
that the frequency and mean duration of visits to one’s own home
and to locations outside the city are also jointly distributed lognor-
mal random variables but that they are characterized by their own
parameters, which do not depend on é.

2.3. Data

The data used to fit the model were collected in the Amazonian
city of Iquitos, Peru. Iquitos is an isolated city of approximately
377000 inhabitants surrounded on three sides by rivers. Only
one regional road leaves the city, meaning that most local

model subcomponent

probability distribution

negative binomial (r, p)

multinomial (p,)

o pdf(8; 7)- expl— p1,5™)

idgnormal (ul8; 4,72 bz ch)UdT) |

 lognormal (w(8; ar, b G1r)y 077

travel outside the city takes place by boat. Besides walking
short distances, movement within the city typically occurs by
motorcycle, motorcar or bus. Neighbourhoods within the city
vary in the availability of services and quality of construction.
Most contain key services (schools, health centres, markets),
but specialized commerce and other services are concentrated
in specific areas of the city (e.g. two main hospitals, a shopping
district in the downtown area). Participants in this study lived in
either of two neighbourhoods (electronic supplementary material,
figure S1), Maynas and Tupac Amaru, which exhibit modest differ-
ences in housing construction and population density [30]. These
neighbourhoods were initially chosen for other studies because
they are mostly self-contained (having schools and health centers)
and are distant enough to limit inter-neighbourhood movement
[9,30]. Historically, dengue virus transmission and mosquito
densities have been higher in Maynas [31].

2.3.1. Geographical information system

Construction of a geographical information system (GIS) for the
city of Iquitos began in 1998 [32] and was ongoing at the time of
this study [30,31,33]. We used coverages that encompassed nearly
50000 lots using the coordinate system Universal Transverse
Mercator WGS-84 Zone 18S. In areas with ongoing epidemio-
logical and entomological research projects, field personnel
assigned location types to each lot. It should be noted though that
many sites were mixed use; e.g. residential and commercial in
many cases. During the retrospective interview study, unmap-
ped locations were physically located to obtain Geographical
Positioning System coordinates and to update the GIS.

2.3.2. Retrospective interviews

Retrospective interviews were conducted using a semi-structured
interview (SSI) [34,35]. The SSI was developed to address the
issues of recall, reliability, reproducibility, compliance, behaviour-
al change and privacy that are typically associated with classic
movement survey methods, such as interviews, diaries or direct
observation. This tool was designed for use with people who
became infected with dengue or who were in shared spaces with
people who had become infected with dengue (potential future
dengue cases), to find out where they had been in the past two
weeks (to identify potential exposure sites). Hence, we were
limited to methods that could be applied retrospectively. Based
on focus groups conducted to develop the SSI, we found that:
(i) people could identify routine locations they visit, but triggers
were needed for certain types of locations, (ii) the best aid for recal-
ling locations visited was to begin the SSI by thinking about a
‘typical day’ and to gradually add memory triggers over the
course of the interview, and (iii) there were clear ‘common activity
spaces’ identified for all. During the development and validation
of the SSI, we found that high-resolution satellite imagery of par-
ticipants” neighbourhoods, combined with street labels, was not
very useful in triggering recall of locations, but aided participants
in describing and locating where they had been. If participants
were unable to find a location on the map, they would either call
someone at the location to ask for the address, or give our research
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Table 2. Summary of candidate models for each model subcomponent.

model subcomponent candidate models

number of locations geometric, Poisson, negative binomial
. Iocatlonsofaglventype e DT TR
activity space
. Iocat|0nsofag|ven e T RS
distance
. frequencyof VISItS e

all possible location type groupings in which types within a group have identical probabilites of being found inan

all possible location type groupings in which types within a group have identical effects of distance from home, which
depend on either one or two parameters per location type grouping

all possible location type groupings in which types within a group have identical effects of distance from home or no

effect of distance from home. Zero or non-zero correlation with duration of visits

duration of visits

all possi.bble location type groupings in which types within a group have identical effects of distance from home orno

effect of distance from home. Zero or non-zero correlation with frequency of visits

time at home

team the best description they could. Our research team would
then find the location and record its position. The SSI followed
with a section on common activity spaces already identified by
others (e.g. schools, markets, health facilities). The SSI concluded
with a section that listed categories of locations that tended to
require triggers to be recalled or else would otherwise likely go
unreported. The result of each interview was a list of the locations
that an individual visited in the two-week period preceding the
interview, as well as estimates of the frequency and duration of
visits to each location.

A total of 120 participants provided information about time
spent at home, 138 about time spent elsewhere and 101 of 157 pro-
vided information about both. These interviews were conducted
with residents of two neighbourhoods (electronic supplementary
material, figure S3), from which study participants were obtained
by convenience sampling and are thus not completely representa-
tive of the local population in terms of age, sex, occupation and
possibly other factors; they are nonetheless diverse (electronic
supplementary material, figures S2-54). Interviews were mostly
conducted during the dengue transmission season (electronic
supplementary material, figure S5), which spans several months,
as well as variation in seasons that could impact movement
behaviour (e.g. times when children are in or out of school).

2.4. Analysis
2.4.1. Model fitting and selection

The first aim of our analysis was to fit and select among candi-
date models for each of the five aspects of movement. For
example, candidate models that we considered for the distri-
bution of the number of locations visited included geometric,
Poisson and negative binomial distributions. Candidate models
for all aspects of movement are listed in table 2. For each
aspect of movement, each candidate model was fitted separately
to the interview data by numerically estimating maximum-
likelihood parameter values. To compare a pair of models with
nested parameters, we performed a likelihood ratio test and
selected the more complex model if p <0.05. For situations
with more than two candidate models, we assessed the relative
support for each by computing each model’s Akaike information
criterion corrected for finite sample size (AIC,), which balances
goodness of fit and model complexity, and then Akaike weights,
which are a measure of relative support [36].

To explore the set of possible models with different levels of
detail about location type, we employed a form of backward
elimination. To do so, we first fitted the candidate model with
the finest breakdown of location types that we considered,
such that each location type had its own set of parameters. We

zero or non-zero correlation between frequency and duration of times at home

then chose the pair of location types with the most similar par-
ameter values and fitted a new model in which the parameters
of those two location types were constrained to be equal. Repeating
this procedure of agglomerating location types based on parameter
similarity, we obtained a set of candidate models with a range of
location-type categorizations, from the case in which each location
type had its own parameter values to the case in which all loca-
tion types had the same parameter values. Additional details of
the model selection procedure specific to different aspects of move-
ment are elaborated on in the electronic supplementary material,
table S2.

For all aspects of movement, we also fitted models separately
to interviews of residents of two distinct neighbourhoods in
Iquitos to assess the robustness of our fitted model to possible
neighbourhood-specific differences (which have been found else-
where [37]). In doing so, we applied the same model selection
procedures as described above, and we assessed support for
either the aggregated model (denoted M, 1) or the disaggre-
gated model (My; + Mr) by AAIC. > 10 (as recommended for a
pair of non-nested models [36, p. 123]).

2.4.2. Comparison of model outputs against data

To assess the realism of patterns of time allocation simulated
with our model, we compared simulation results against patterns
of time allocation derived directly from the retrospective inter-
views. Although data from these interviews were also used to
parametrize the model, the model’s ability to reproduce patterns
of individual time allocation does not necessarily follow, because
the features of the interview data with which the model was
parametrized are distinct from those against which model out-
puts were compared. This comparison therefore allowed us to
assess the model’s ability to translate basic aspects of movement
into descriptions of time allocation across locations, which is
the objective of the model and a goal that is common to many
applications in epidemiology and other fields.

To that end, we first calculated the empirical pattern of time
allocation within each individual’s activity space. For the same
number of individuals as participated in retrospective interviews
of time spent at home and elsewhere (n =101), we simulated
patterns of time allocation 10° times (e.g. figure 1). Given these
empirical and simulated patterns of time allocation, we then
examined (i) the proportion of individuals that allocated a
certain proportion of their time at a single location of each
location type as well as at their home and (ii) how time allocation
was distributed over distance from home.

Our quantitative approach to the comparison of simulated and
empirical patterns of time allocation was based on that of statistical
hypothesis testing. For a given statistic (e.g. proportion of time
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Figure 3. Numbers of locations in individuals’ activity spaces, in total (top) and by location type (other panels). Grey bars show empirical data from retrospective
interviews (n = 138). Black stems show a fitted negative binomial distribution (top) and a fitted multinomial distribution conditioned on the empirical distribution
of total numbers of locations and marginalized for each location type (other panels).

allocated at a distance of 1 km from home), the set of simulated
values of that statistic comprised the null distribution against
which the empirical value was compared. Formally, and assuming
a two-tailed test, if the empirical value of a given statistic fell
between the 2.5th and 97.5th percentiles of this null distribution,
then our interpretation was that we could not reject the possibility
that the empirical value was generated by the process codified by
our model. Informally, given that any single statistic that we con-
sidered fell along a continuum of related statistics (e.g. distances
from home of 100 m, 200 m, etc.), we found it instructive to visu-
ally compare how well the entire set of empirical statistics
tracked the set of simulated statistics.

3. Results

3.1. Model fitting and selection

3.1.1. Activity space composition
Among the three distributions that we considered, we found
clear support for the negative binomial (Akaike weight ~ 1,
table S3, figure 3). This result is consistent with the hypoth-
esis that activity spaces comprised m = 12 classes each with
identical parameter p = 0.4997, or, alternatively, that activity
space size was Poisson distributed with variation among
individuals’ parameters that was gamma distributed with
hyperparameters equal to r and p/(1 — p).

We found support for uneven representation of location
types within individuals’ activity spaces, with the best-
supported model being those in which there were six distinct

location-type groups, and with models with between five and
nine such groups having nearly all Akaike weight (table S4).
The best-supported model assigned 34% of locations as com-
mercial, 25% as residential, 12% as recreational and others at
less than 10% each (figure 3). All models with some fitted
vector p fit the data better than a model in which p equalled the
proportions of locations of each type within the city (table S4),
which represented the hypothesis that locations were chosen
irrespective of type.

For each location type that we considered, there was a dis-
tinct effect of distance from home on its inclusion in one’s
activity space, as the model with separate parameters for each
location type had an AIC, value 49 lower than the next best
model (table S5). For locations in the recreation or others cat-
egories, individuals were more likely to visit locations of an
intermediate distance from home (approx. 0.5—2km) than
they were locations nearby or far away (figure 4). For all other
location types, individuals were less likely to visit locations
farther from home, with this effect being particularly strong
for locations in the residential, commercial, education and
institutions categories (figure 4). These different relationships
for different location types are likely attributable to aspatial con-
siderations, given that we accounted for the spatial distribution
of each location type relative to study participants” homes.

3.1.2. Time allocation
The frequency and mean duration of visits to home were
best described by a bivariate lognormal distribution with
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Figure 4. Relationship between distance from home and the probability that a location of a given type is chosen for one’s activity space. The probability density of
distances from home at which activity space locations of a given type are located (blue area) is obtained by weighting the probability density of distances from home at
which all locations of a given type are located (red area) by a function for how distance from home affects the probability of being chosen for one’s activity space (curves).
The thick black curves (whose parameter values are listed in each panel) were fitted to all interview data without consideration of the neighbourhood in which inter-
viewees live, whereas the thin grey curves were fitted separately to interviews from residents of the Maynas and Tupac neighbourhoods. Rug plots along the bottom of
each panel indicate the distances from home at which locations in the activity spaces of study participants were located. (Online version in colour.)

an average frequency of 2.79 times per day, an average mean
duration of 4.2 h per visit (between the hours of 5.00 and
22.00), and a significant negative correlation between
those quantities (p = —0.59; likelihood ratio test: X% =51.8,
p = 6.2¢ — 13) (figure 5).

For locations other than home, one attribute that we found
to affect both the frequency and mean duration of visits
was location type. Comparing models of the frequency and
mean duration of visits with different numbers of location-
type groups, we found strong support for the model with the
most detailed representation of location types (Akaike
weight = 0.99, table S6). For each of those location types, we
also found differences in how frequencies and mean durations
of visits to locations of those types were affected by distance
from home and by a correlation between those quantities.
Distance from home had a significant effect only for residential
and commercial location types (Akaike weights ~ 1, table S7),
with the frequency and mean duration of visits decreasing and
increasing, respectively, with increasing distance from home.
Statistical support for a correlation between the frequency
and mean duration of visits to locations of each type was
only evident for the education and institutions location types
(Akaike weights > 0.95, electronic supplementary material,
table S6), which had correlations of 0.27 and 0.49, respectively
(electronic supplementary material, table S8).

The frequency and mean duration of visits outside the
city were best described by a bivariate lognormal distribution
with an average frequency of once per 6.4 days, an average
mean duration of 4.4 h, and no correlation between those
quantities (likelihood ratio test: x> = 2.56, p = 0.11) (figure 5).

3.1.3. Neighbourhood comparison

Applying our model fitting and selection procedures
separately to interviews from residents of two distinct neigh-
bourhoods, we found strong statistical support for the
disaggregated neighbourhood model (My + M7) over the
aggregated model (M, ; 1) only for the model subcomponent
concerning the effect of distance from home on inclusion in the
activity space (AAIC. = 59.24, table S9). Performing a similar
comparison of My + My and My 1 by location type
(table S10), we found statistical support for differences in
the effect of distance from home only for the recreation
(AAIC. = 34.86), institutions (AAIC.=11.66)
(AAIC. = 13.64) location types (figure 4).

and others

3.2. Comparison of model outputs against data

Both empirical and simulated data displayed wide variation
in the proportion of time that individuals spent at home
(figure 6). However, the fitted model tended to predict that
very few people spent a majority of their time at home. For
locations other than home, simulated patterns of time allocation
were consistent with the empirical pattern that most people spent
relatively little time at any single location (i.e. 10% or less). The
most significant departures from this pattern in the empirical
data were that approximately 10% of study participants who vis-
ited an educational location or a location outside of Iquitos spent
significantly more time at those locations (approx. 20 —30%) than
was exhibited in the simulated data. For location types that were
relatively infrequently included in one’s activity space (i.e. health,
institutions, religion, others), the empirical pattern of very few
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intermediate; yellow, high) with maximum-likelihood parameter estimates. Note that (i) surfaces for residential and commercial location types reflect maximum-
likelihood parameter estimates at a distance of 100 m from home and that other distances have somewhat different surfaces and (ii) it is not possible for data to
occupy the white region above the black curve, which represents the combinations of frequencies and mean durations that result in a person spending all of their

time at a single location. (Online version in colour.)
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Figure 6. Distributions of the overall proportion of an individual’s time spent at a single location of each of several location types. Black lines show the proportion of
participant—location pairs in the retrospective interview study for which a given proportion of the participant's time was spent at that location. Red lines show 10°
analogous distributions resulting from simulating activity spaces, simulating movement parameters within those activity spaces, and calculating 7r for the same 101
individuals that participated in both parts of the retrospective interview study. (Online version in colour.)

individuals spending a significant amount of their time at a single
location of one of those types was consistent with individual
replicates of the simulation (figure 6).

Simulated data also captured some patterns of time allo-
cation over a range of distances from home but were deficient
in other ways. One of the primary deficiencies of the simu-
lated data was that they under-predicted the proportion
of time allocated within 100 m of an individual’'s home
(figure 7). That time was instead allocated elsewhere, thereby
shifting the simulated patterns of time allocation at distances
beyond 100 m above the empirical pattern at those distances.
The simulated data captured the mean pattern of time allo-
cation between distances of approximately 100 m to 5km

relatively well otherwise, but they appeared to under-
represent the variability in time allocation at different
distances (i.e. the simulated patterns were relatively smooth
compared with the empirical pattern). The simulations also
somewhat over-predicted time allocated beyond 5 km, but
in individual replicates this discrepancy was not as severe
as it appeared in the ensemble. Examining the mean distance
from home of where time was allocated (figure 7, green) and
the mean distance of locations visited (figure 7, blue), it
appeared that over-predicting the distance from home at
which time was allocated resulted from both over-predicting
the distance of locations that were visited and over-predicting
the frequency and duration of visits to faraway locations.
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