Common mechanics of mode switching in locomotion of limbless and legged animals

Shigeru Kuroda1,†, Itsuki Kunita1, Yoshimi Tanaka2, Akio Ishiguro3,5, Ryo Kobayashi4,5 and Toshiyuki Nakagaki1,5

1School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan
2Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
3Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
4Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
5CREST, JST, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan

Crawling using muscular waves is observed in many species, including planaria, leeches, nemertea, aplysia, snails, chitons, earthworms and maggots. Contraction or extension waves propagate along the antero-posterior axis of the body as the crawler pushes the ground substratum backward. However, the observation that locomotory waves can be directed forward or backward has attracted much attention over the past hundred years. Legged organisms such as centipedes and millipedes exhibit parallel phenomena; leg tips form density waves that propagate backward or forward. Mechanical considerations reveal that leg-density waves play a similar role to locomotory waves in limbless species, and that locomotory waves are used by a mechanism common to both legged and limbless species to achieve crawling. Here, we report that both mode switching of the wave direction and friction control were achieved when backward motion was induced in the laboratory. We show that the many variations of switching in different animals can essentially be classified in two types according to mechanical considerations. We propose that during their evolution, limbless crawlers first moved in a manner similar to walking before legs were obtained. Therefore, legged crawlers might have learned the mechanical mode of movement involved in walking long before obtaining legs.

1. Introduction

Crawling is the fundamental method of invertebrate locomotion. Therefore, general insights into the mechanism of crawling are important from an evolutionary point of view if they can be applied to a wide range of organism classes. There are several methods by which crawling on a solid surface can take place, depending on the locomotory equipment available. These methods include ciliary, peristaltic, pedal, undulatory and many-legged locomotion. However, irrespective of differences in equipment, these mechanisms often involve locomotory waves which can be defined as the spatio-temporal coordination of motion of different parts of the body along the longitudinal axis. This allows the crawler to push the ground substratum backward and move itself forward.

A peristaltic wave is one such type of locomotory wave that is often observed in limbless species throughout the phylogenetic tree such as planaria, leeches, nemertea, aplysia, earthworms and maggots. For example, peristaltic waves in earthworms are generated by successive waves of contraction in the two sets of antagonistic muscles, the circular muscles and longitudinal muscles; part of the body is elongated and thinned by contraction of the circular muscles, whereas another part of the body is contracted and thickened by contraction of
the longitudinal muscles [1]. Caterpillars also use muscular movement involving peristalsis along the body axis. In some species of caterpillar, the body comprises a gut surrounded by a soft shell, which consists of the body wall (cuticle) and musculature; the former resembles a woven tube and the latter resembles a complicated, repeating series of primarily longitudinal and oblique muscles [2]. In some maggots, such as *Neopentheria ferruginea*, the occurrence of peristalsis is not clearly visible owing to transparency of the body wall. However, peristalsis becomes apparent if the position of the visible gut with respect to the antero-posterior axis of the whole body is observed.

The pedal wave is another kind of locomotory wave, which appears in the sole of the foot in gastropods and chitons. In these animals, the foot is responsible for propelling the body over the ground and fixing it to the substratum. Locomotion in these organisms is brought about by waves of contraction or elongation passing along the sole of the foot. These pedal waves are formed by coordinated contraction and relaxation of the muscles immediately under the epithelium of the sole [3]. The part of the foot in the area between pedal waves, known as the interwave, is stationary relative to the substratum and is physically attached to the substrate. The pedal waves may be *monotaxic* in the sense that they occupy the whole breadth of the sole, or *ditaxic* if there are two waves that each occupy half of the sole. In the latter case, the waves pass alternately over the right- and left-hand sides of the sole and are out of phase with one another.

Parallel phenomena are observed in legged organisms. During the locomotion of Myriapoda, each leg rotates around its base with a constant phase difference between adjacent legs. Therefore, density waves are formed by the leg-tip positions which propagate along the body axis.

Such locomotory waves have been carefully observed in *Mollusca* with a flat ventral foot-like organ, first [4] in Annelida with a limbless worm-like body [1], and subsequently in Arthropoda and Onychophora [5]. There are two opposite cases in which the locomotory waves travel forward and backward. The forward waves, which propagate in the same direction as the animal is moving, are termed *direct* waves, whereas waves that propagate in the opposite direction to the movement of the animal are known as *retrograde* waves [6]. It is generally considered that the direction of the waves is fixed for a given species.

The propulsive machinery is very different among crawlers with locomotory waves, but the kinematic similarity of peristaltic waves in Annelida to pedal waves in *Mollusca* or leg-density waves in myriapods and Onychophora has been correctly pointed out in diagrammatic explanations [7]. There are many recent publications where mechanical and/or mathematical models of locomotion of crawling systems are analysed [8–11]. Tanaka et al. [12] studied the mechanics of peristaltic locomotion and the role of anchoring in locomotory waves by simple mechanical modelling of a peristaltic crawler. Mechanical considerations reveal (i) that leg-density waves play the same role as peristaltic waves in limbless crawlers and (ii) that locomotory waves push the body forward by a common mechanism. A comprehensive understanding of the biomechanics of crawling remains to be found in many species.

Crawlers tend to have a preferred direction, i.e. forward direction, of locomotion which comes from not only asymmetric structure of their bodies along the antero-posterior axis, such as a head with and a tail without sensory organs, but also asymmetric structure of local parts of contact area with the ground, for example backward-sloping bristles such as earthworms have on the ventral surface of the body [13]. To achieve a directional locomotion, the crawlers must perform friction control in which anchorings or unanchorings take place on some parts of the contact area at a suitable timing. The friction control may be helped by the asymmetric structure of the body parts, but is not inevitably provided only by such a static structure. It is more flexible, because the crawlers may have other modes of movement, including backward locomotion.

A pioneering study in which limbless and legged crawlers were compared can be found in Gray’s book published in 1968 [7]. Thereafter, many reports have been published in which typical forward locomotion modes are described for individual animal species (some reports of note include [14–16]). Here, we explain that there are several modes of crawling from a mechanical point of view. Taking a broad view of crawling modes over a variety of species, we show that a simple, common rule of biomechanics holds despite differences in physical appearance between species.

In order to consider the general mechanics of invertebrate crawling, including both limbless and many-legged animals, we examine the locomotory waves that propagate during forward/backward migration in more than three phyla and eight classes. We provide a mechanical classification and explanation of the multiple manoeuvres involved in switching between forward and backward locomotion.

Finally, we discuss an evolutionary implication of our findings, namely that legged crawling develops from limbless movement. We focus on this issue from a mechanical point of view, which thus far has not been addressed in any theory of evolution. Inspection of the crawlers that we selected from a wide range of phyla allows us to give a unified viewpoint on this problem. The commonly given explanation of the evolution of legged locomotion is as follows. At some point in time, outgrowths of the body wall orthogonal to the primary body axis appeared by random mutation. A method of movement using these outgrowths was subsequently acquired. Such organisms then developed leg structures and developed the method of movement through repetition of the mutation and natural selection. In such a scenario, the development of a body structure always precedes its function (‘from structure to function’). By contrast, we use the results of our study to propose a different scenario for the acceleration of the evolution in which the function is a precedent for the structure (‘from function to structure’).

2. Organisms and methods

2.1. Animals

The experiments were performed using two chitons (*Ischnochiton comptus* and *Cryptochiton stelleri*), two kinds of marine gastropods (vetigastropod (*Monodonta labio form confusa*)) and limpet (*Lottia cassis*), earthworms (*Phereutina*), polychaete worms (*Eunicea*), maggots (*fly larvae; Mycetophilidae*), moth larvae (*Marumba gaschkevitschi echephoron*), centipedes (*Geophilomorpha* and *Scolopendromorpha* *Scolopocryptops*) and millipedes (*Polydesmus oxidus*). All specimens were collected in Hakodate or Usuji, Hokkaido, Japan. All the experiments were performed at room temperature (24°C). We observed both forward and backward locomotion in all of these animals.
2.2. Measurements
Images were taken using a digital camera: either Casio Co., type EX-F1 (30 or 300 fps) or Canon Co., type EOS 5D Mark II (30 fps). High-speed recordings (300 fps) were used to observe the locomotion of legged animals. The chitons and marine gastropods were allowed to crawl in lanes on a plastic transparent tray, the widths of which were adjusted to their body widths. The pedal waves were recorded from below. The earthworms and polychaete worms were allowed to crawl in open-ended glass tubes (internal diameters 6 and 12 mm, respectively) and were recorded from above. The moth larvae were allowed to crawl in plastic transparent rectangle tubes, one end of which were closed and the widths and heights of which were adjusted to their body sizes. The centipedes crawled in lanes on a plastic tray, the widths of which were adjusted such that movement was as straight as possible. The millipedes were allowed to crawl in a glass tube (internal diameter 6 mm), one end of which was closed; the movement was recorded from above. The maggot of Mycetophilidae is an apodous larva. The specimens were placed on an agar plate (plastic Petri dish with cover, 9 cm in diameter). Several minutes later, the maggots began to create a tubular nest with their transparent sticky mucus. The nest was suspended in the air by sticky mucus strings connecting it to both the plastic ceiling and the agar floor. The maggots moved back and forth freely in their tubular nests, and were recorded from above. It was noted that when they were put on the plastic Petri dish, the maggots also moved freely on the flat surface in the same manner as in the nests. However, we observed only forward locomotion in this case.

2.2.1. Induction of backward locomotion
Backward locomotion of chitons and maggots was spontaneous without the need for any obstacles or stimuli. Backward locomotion was induced in the other animals as follows. The mouths of the marine gastropods were strongly illuminated using halogen lamps for several minutes when they were at the dead-end of the lane. In *M. labio form confusa*, backward movement without rotation was induced by supporting the pedal feet tightly by two bamboo sticks (diameter 2 mm) from both sides. Backward locomotion in earthworms and polychaete worms was induced by poking their mouths when they reached the exit of the glass tube. Millipedes and moth larvae moved backward spontaneously when they reached the closed end of the tubes. Backward locomotion of Geophilomorpha was induced by touching their heads lightly. For Scolopendromorpha Scolopocryptops, backward locomotion was induced when their heads were strongly illuminated for several tens of seconds using halogen lamps at the dead-ends of the narrow lanes.

2.3. Data analysis
Colour movies were analysed after converting into greyscale. Exceptionally, in the case of *M. labio form confusa*, the colour movies were analysed after projecting to blue component. Space–time plots (e.g. figure 1a) were used to visualize and analyse the time development of the wave pattern, where a suitable line was chosen to demonstrate the evolution of the waves. The brightness and contrast of the images were optimized based on analyses of the histograms of the images. All image analysis was performed using either pre-installed plug-ins or our own custom-made plug-in programs for the IMAGEJ software [17].

3. Results of biological experiment
The animal specimens were classified into three groups depending on their body structure and locomotory apparatus:
(i) limbless animals with a foot-like flat muscle sheet (gastropods and chitons), (ii) worm-like limbless animals (earthworms and maggots), and (iii) multi-legged animals (centipedes and millipedes). The observations made for each group are described in the following subsections.

3.1. Limbless animals with foot-like flat muscle sheet

Figure 1a shows a space–time plot of the pedal waves of the gastropod *M. labio form confusa*, during forward and backward locomotion. The pedal waves were direct and ditaxic for both the forward and backward locomotion. During forward locomotion, the contraction waves propagated from the posterior to the anterior end (figure 1a left panel), whereas during backward locomotion, they propagated from the anterior to the posterior end (figure 1a right panel). It should be noted that, during each forward and backward locomotion, the directions of the waves over the right- and left-hand sides of the sole were identical.

Figure 1b shows the retrograde and monotaxic waves that propagated during the forward locomotion of the chiton *L. cassis*. The waves were direct and monotaxic for backward locomotion. During forward locomotion, the anterior edge extended in the anterior direction; this elongation wave ran to the posterior end (figure 1b left panel). Interestingly, backward locomotion involved contraction of the anterior edge in the posterior direction. This contraction wave ran to the posterior end (figure 1b right panel). Although the same wave direction was maintained during forward and backward locomotion, friction control associated with the pedal wave was reversed: the extending part of the foot was lifted from the substratum (to lower frictional resistance) for forward migration, whereas the contracting part was lifted for backward migration. This is typical for chitons and has also been observed in other species including *Fissurella* (by Olmstead [18]) and in *C. stelleri* by ourselves. We observed the same combination of waves during forward and backward locomotion in the limpet *L. cassis*, but the waves in this case were ditaxic. This has earlier been thoroughly investigated for the limpet *Patella vulgata* [14].

3.2. Worm-like limbless animals

In the maggot, *Mycetophilidae*, direct waves propagated during both forward and backward locomotion. Forward locomotion began with retraction of the posterior end, and this contraction propagated towards the anterior end. The anterior end extended forward just after the wave reached it (figure 2a). During backward locomotion, these processes were reversed both temporally and spatially along the body axis.

In the earthworm, *Pheretima*, the peristaltic waves were retrograde during both forward and backward locomotion (figure 2b).

3.3. Multi-legged animals

The locomotion of multi-legged animals is usually accompanied by density waves formed by the leg-tip positions. Each cycle of the movement of a limb comprises a retraction (active stroke) phase and a protraction (recovery stroke) phase. In the case of forward locomotion, the foot moved in the posterior direction during the retraction phase and was lowered to the ground with timing such that almost perfect anchoring made it stationary relative to the ground. Subsequently, during the protraction phase, the foot was lifted up from the ground and moved in the anterior direction. In the case of backward locomotion, the limb was rotated in reverse manner, that is, during the retraction and protraction...
phases, it moved in the anterior and posterior directions, respectively.

Figure 3 shows the direct waves observed during both forward and backward locomotion in the millipede *Oxidus*. The spatial interval between adjacent legs was wider in the retraction phase than in the protraction phase, whereas the rotation speed significantly decreased in the retraction phase. In other words, the dense part of the gait wave was observed in the recovery stroke, and the sparse part was in the active stroke. The dense and sparse parts appeared in alternating manner along the body axis and propagated towards the anterior and posterior ends during forward and the backward locomotion, respectively.

Figure 3b shows the retrograde waves that were observed during both forward and backward locomotion in the centipede *Geophilomorph*. The spatial interval between adjacent legs was narrower in the retraction phase than in the protraction phase, and the ground speed of the leg tip was almost zero during retraction. In other words, the sparse and dense parts of the wave were found in the protraction phase and the retraction phase, respectively. The dense parts of the wave were observed to be almost stationary relative to the ground, because the positions at which the propulsive legs were set down corresponded to common footprints. However, the dense parts propagated in posterior manner along the body axis during forward locomotion and anterior manner during backward locomotion. A summary of the wave directions observed during forward and backward locomotion in all of the species studied is given in table 1.

Table 1. Summary of wave direction during forward and backward locomotion of all animals studied. The first and second terms connected by a hyphen indicate the wave direction observed for forward and backward locomotion, respectively. For instance, the term retrograde–direct means that a retrograde wave propagated during forward locomotion and a direct wave propagated during backward locomotion.

<table>
<thead>
<tr>
<th>Animal Group</th>
<th>Direct – Direct</th>
<th>Retrograde – Retrograde</th>
<th>Retrograde – Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mollusca</td>
<td>Monodonta labio form confusa</td>
<td>Ischnochiton comptus</td>
<td></td>
</tr>
<tr>
<td>Annelida and</td>
<td>Eunicida, Neompharia ferruginea</td>
<td>Pheretima</td>
<td></td>
</tr>
<tr>
<td>Larvae of Insecta</td>
<td>Lottia cassis</td>
<td>Cryptochiton stelleri, Lottia cassis</td>
<td></td>
</tr>
<tr>
<td>Myriapoda</td>
<td>Oxidus</td>
<td>Geophilomorph, Scolopocryptops</td>
<td></td>
</tr>
</tbody>
</table>

4. Mechanics of crawling

4.1. Multi-block modelling of crawlers

4.1.1. Common mechanics among the three animal groups

Because the locomotory equipment possessed by our three groups of specimens were very different, we now focus on...
The leg density waves of myriapods (figure 5b) correspond to the circular movement of the leg tip from the base of the leg at time t, respectively. We can observe that $X_n(t) = \frac{dX_n(t)}{dt}$ is proportional to $h_n(t)$ when the leg tip rotates clockwise as in forward locomotion. When the leg tip rotates in inverse manner as in backward locomotion, $X_n(t)$ is proportional to $-h_n(t)$.

If we focus on the tangential movement of the interface, then the conversion of peristaltic waves to or from leg-density waves is possible as follows. Let assume that the legs of a myriapod rotate around their bases with the same constant angular velocity as the intrinsic motion (figure 5a). By considering the natural projection of the circular movement of the leg tip with respect to the body axis, it can be envisaged as to-and-fro motion along the body axis. Upper or middle panel of figure 5b schematically shows a snapshot of the circular motion of each leg of a myriapod, where there is a constant phase difference between adjacent legs, respectively. When the tips of all the legs are viewed along the same projection, correspondence is obtained between peristaltic waves and the leg-density waves of myriapods (figure 5b lower panel).

We now consider aspect (ii) above. In earthworms, the body segments are elongated and thinned by contraction of the longitudinal muscles and relaxation of the longitudinal muscles, whereas they are contracted and thickened by contraction of the longitudinal muscles and relaxation of the circular muscles [7]. In relation to this peristaltic wave, the control of ground friction (anchoring control) also takes place: the elongated and thinned segment is lifted up from the substrate, reducing the frictional resistance, whereas the contracted and thickened segment pushes against the substrate, leading to higher frictional resistance.

In gastropods and chitons, parts of the sole of the foot adhere to the substrate in the interwave state (zero ground friction). The foot undergoes a cyclic movement of contraction and elongation; this local activity forms a pedal wave [19]. In relation to this peristaltic wave, the control of ground friction (anchoring control) also takes place: the elongated and thinned segment is lifted up from the substrate, reducing the frictional resistance, whereas the contracted and thickened segment pushes against the substrate, leading to higher frictional resistance.

Figure 4. Side view of animals in the three groups and corresponding components of internal motion parallel (or tangential) to the substrate, indicated by the double-headed arrows beneath the body. The heads of all animals are on the right. (a) Limbless animals with flat, foot-like muscle sheet (gastropods, chitons). (b) Worm-like limbless animals (maggots, earthworms). (c) Multi-legged animals (millipedes, centipedes). Each leg rotates clockwise during forward locomotion and anticlockwise during backward locomotion. (d) Multi-block model for peristaltic movement coupled with friction control.

Figure 5. Peristaltic waves to/from legged locomotion. (a) Assumed simple intrinsic rotation of each leg around its base with a constant angular velocity. A positive direction of the body axis is taken from tail to head and let $X_n(t)$ and $h_n(t)$ be the horizontal and vertical displacements of the nth leg tip from the base of the leg at time t, respectively. We can observe that $X_n(t) = \frac{dX_n(t)}{dt}$ is proportional to $h_n(t)$ when the leg tip rotates clockwise as in forward locomotion. When the leg tip rotates in inverse manner as in backward locomotion, $X_n(t)$ is proportional to $-h_n(t)$. (b) Similarities in the mechanical nature of legless crawling and legged locomotion. The blank arrows indicate directions of the leg-density waves. The anchoring may occur in the dense or sparse part in the upper or middle case, respectively. The lower panel shows the corresponding density waves formed by the leg-tip positions.
To the current position, Xₙ, displacement from its standard position, xₙ, and its velocity, vₙ.

4.1.2. Multi-block modelling of crawlers

For the reasons stated above, the three groups of animals have the following features in common (figure 4d):

1. Multi-block system: the interfacial body parts to the substrate can be represented as a series of blocks (body segments) arranged along the body axis.
2. Oscillator: the tangential component of the free internal movement of each block is periodic.
3. Phase wave (density wave): there is a constant phase difference between successive blocks, that is, phase (or density) waves propagate along the body axis.
4. (Un-)anchoring phase: (un-)anchoring occurs at specific phases of the oscillation of blocks.

Tanaka et al. [12] has proposed a simple mechanical model for peristaltic crawlers with multi-block body which possesses the above four common features. From analytical treatments of the model, they showed that the direction of movement of such crawlers can be understood by the following two-step criteria. In the first step, we consider a virtual state in which the (viscous) friction coefficients between the substrate and local parts of the body (blocks) are temporally constant during a complete cycle of motion of the blocks. We call this virtual state frictional standard state. Under this condition, we can assume that internal motion of the crawler that satisfies conditions (1) and (3) occurs, but no directional motion takes place. In the next step, we introduce (spatio-temporal) friction control in which condition (4) is satisfied. If the blocks that have negative (or positive) velocity in the frictional standard state are anchored (or unanchored), then the locomotion occurs in the positive direction, because the anchorings reduce the negative velocity component and the unanchorings enhance the positive velocity component. Here, anchoring or unanchoring on a block means temporarily increase or decrease of the friction coefficient of the block. In a similar way, locomotion can also occur in the negative direction.

We now consider the relationship between the direction of locomotion and the timing of friction control with respect to the phase wave in crawlers, in the case where conditions (1)–(4) above are satisfied. It should be noted that the above criterion on friction control timing for the directional locomotion of a crawler involves the velocity of each block, but is independent of the phase relations between the motions of different blocks (condition (3)). However, when a phase wave exists, the timing of friction control that is necessary for directional locomotion is naturally associated with the specific phase of the wave, because the velocity of each block and the phase of the wave are uniquely coupled. To depict this coupling intuitively, we give a phase space representation of the motion of the blocks in the frictional standard state.

4.2. Phase space description of internal motion of peristaltic crawlers (temporally constant friction coefficient case)

Let xₙ(t) = Xₙ(t) − Oₙ(t) be the displacement of the nth block from its standard position, Oₙ(t), to the current position, Xₙ(t), at time t (figure 6a). The standard positions of the blocks are assumed to be uniformly arranged and fixed relative to the body, such that t₀ = Oₙ+1(t) − Oₙ(t) is a constant that is independent of n and t. We fix the total number of blocks to be N, and we number the blocks from the tail (x₁) to the head (xₙ) as shown in figure 7a.

The positive direction is always from tail to head in this paper. For the sake of simplicity, we consider the oscillation of each block along the body axis to be sinusoidal whose angular frequency, ω₀, is unity. The motion of each block can then be represented as a clockwise rotating point on a circle in the phase space spanned by (xₙ) and vₙ (= dxₙ/dt) (figure 6b).

Next, we consider further details of the phase waves that crawlers use for locomotion. We assume that the moving distance of the phase wave during one period is the same as the whole body length. Figure 7a shows a snapshot of a postero-anterior wave resulting from the sinusoidal motion of each block. We represent this wave in the single phase plane in the manner shown in figure 7b.

The mean distance of adjacent blocks around the nth block is (Xₙ₊₁ − Xₙ) + (Xₙ − Xₙ₋₁))/2 = (t₀ + (xₙ₊₁ − xₙ₋₁)) / 2, and the spatial density of the blocks can be estimated as (t₀ + xₙ)⁻¹, where xₙ = (Xₙ₊₁ − Xₙ₋₁)/2. It says that the spatial density becomes lower and higher when xₙ becomes larger and smaller, respectively. The relation between the velocity (vₙ) and the spatial density ((t₀ + xₙ)⁻¹) of the block depends...
on the direction of the waves. For example, for the postero-
anterior wave in figure 7b, when a block is situated in the
lower half of the phase plane \((x_n^{0} < 0)\), the distances from
the neighbouring blocks are greater than the mean distance
\((x_n^{0} > 0)\), so that the bottom of the circle is the most sparse.
In a similar way, the top of the circle is the most dense. For
a wave propagating in the opposite, antero-posterior direction,
the bottom and top of the circle are the most dense and sparse,
respectively (figure 7c).3

4.3. Anchoring/unanchoring phase for forward
locomotion

We are now able to formulate conditions for the timing of
friction control in the phase waves. In order to realize for-
dward locomotion in a peristaltic crawler, the anchoring
should occur in the sparse \((x_n^{0} < 0)\) parts of postero-anterior
waves (figure 8a), and in the dense \((x_n^{0} > 0)\) parts of antero-
posterior waves (figure 8b). In the same way, the unanchoring
in the dense \((x_n^{0} > 0)\) parts of postero-anterior waves and in
the sparse \((x_n^{0} > 0)\) parts of antero-posterior waves can also
provide forward locomotion (figure 8).

Based on the theoretical considerations above, we
can immediately extract the following facts from our
experimental data without any further observations of the
contact interfaces of the animals. In the case of forward
locomotion with direct waves (direct forward case), anchoring
should take place at the sparse parts of the locomotory
wave and unanchoring should occur in the remaining parts
of the wave (left-hand panels of figures 1a, 2a and 3a). By con-
trast, in the case of forward locomotion with retrograde
waves (retrograde forward case), anchoring should always be
at the dense part and unanchoring in the remaining parts
of the wave (left-hand panels of figures 1b, 2b and 3b). In
all three groups of animals, the locomotory waves are
accompanied by the control of ground friction.

4.4. Theoretically possible manoeuvres for mode
switching from forward locomotion to
backward locomotion

In the same way as for forward locomotion, the timing of fric-
tion control for backward locomotion is as follows: anchoring
(or unanchoring) should occur in the dense \((x_n^{0} > 0)\) (or
sparse \((x_n^{0} < 0)\)) parts of postero-anterior waves, and in
the sparse \((x_n^{0} > 0)\) (or dense \((x_n^{0} < 0)\)) parts of antero-
posterior waves, respectively. Therefore, the manoeuvres of
switching between forward and backward locomotion can
roughly be classified into two types. The first manoeuvre is reversal of the wave direction: the direction of the wave for backward locomotion is opposite to that for forward locomotion. Here, two cases can be identified, depending on the directions of postero-anterior and antero-posterior waves.

(1) Direct forward and direct backward case
Figure 9a shows a single phase space representation before and after mode switching has occurred. In the case of forward locomotion with a direct wave, anchoring (or unanchoring) takes place in the sparse (or dense) part. For backward locomotion, the wave direction is reversed from postero-anterior to antero-posterior, and the direct wave is unchanged from that for forward locomotion. Therefore, anchoring (or unanchoring) should take place in the sparse (or dense) part, the same as for forward locomotion.

(2) Retrograde forward and retrograde backward case
A retrograde wave is observed for both forward and backward locomotion because the antero-posterior wave is reversed together with reversal of the locomotion direction. When these reversals take place, the anchoring (or unanchoring) is kept in the dense (or sparse) part.

To summarize, animals can reverse their direction of movement by switching the direction of their locomotory waves without any change of the anchoring (or unanchoring) phase in their rotational motion. The direct–direct and retrograde–retrograde cases are perfectly symmetric in a mathematical sense.

The second manoeuvre is inversion of the anchoring phase between the dense and sparse parts, whereas the direction of the wave is kept the same for both forward and backward locomotion. Here, two cases can also be identified, depending on the directions of the waves.

(3) Retrograde forward and direct backward case
As shown in figure 9b, for forward locomotion with a retrograde wave, anchoring (or unanchoring) takes place...
in the dense (or sparse) part. For backward locomotion, while the antero-posterior wave remains and the direct wave is observed, the dense part becomes the position for unanchoring instead of anchoring.

(4) Direct forward and retrograde backward case

Here, a similar inversion of the anchoring phase is carried out. In the case of forward locomotion, anchoring (or unanchoring) occurs in the sparse (or dense) part. For backward locomotion, anchoring (or unanchoring) should occur in the dense (or sparse) part, because in postero-anterior waves the segments move towards the anterior (or posterior) in the dense (or sparse) part, as described for case (2).

Organisms are thus able to reverse their direction of movement by switching the friction control timing in the phase waves without any change in direction of the waves.

4.5. Comparison with real animals and concluding remarks

For a variety of legged and limbless animals across several phyla, we have demonstrated and classified the roles of locomotory waves for movement in the forward and backward directions using phase space analysis of longitudinally arranged multiple locomotory oscillators and by considering the timing of anchoring in the waves. In particular, the manoeuvre of mode switching from forward to backward locomotion can be classified into two types: (1) changing the direction of the waves and (2) changing the anchoring timing in the waves. Most of our experimental observations fall into the former category. It should be noted that we could not find any specimen that adopts a manoeuvre corresponding to case (4) above, direct forward but retrograde backward, although this combination should be possible from our theory; further investigation of this aspect will be left for future studies.

In this study, all the frictional effects involved in animal–substratum contacts were replaced by a binary representation ((un-)anchored state or not). Although the modelling is simple, it seems to be enough to explain the experimental results at the level of detail needed to support the conclusion that all studied animals implement similar motility patterns. However, if we intend to describe locomotion of a particular crawler in more detail, we need to consider a complicated friction law that depends on the texture of the ventral surface and on the structure of the contact interface (e.g. the intermediate material is viscus mucus, soil particles, etc.). For example, the mucus–pedal foot interaction in gastropods includes potential dynamical richness, and the details of mucus rheology and the foot geometry can play an important role in dictating gastropod locomotion [8].

Our results indicate that legged locomotion (i.e. ‘walking’) and limbless locomotion can be considered in the same framework of general peristaltic crawling. In this context, one advantage of legged locomotion over limbless locomotion, in which the animal primarily uses the body itself as a propulsive structure, is the greater ease of friction control during the (un-)anchoring phase. Another is the acquisition of larger stride which is associated with the amplitude in each to-and-fro motion of the contact interfaces. This enables the legged animals to move faster than the limbless animals even under a condition of the same angular speed in each to-and-fro motion.

5. Discussion

It is probable that in terms of evolution, movement using appendages/outgrowths from the body wall appeared subsequent to limbless crawling such as peristaltic or pedal wave movement [22,23]. Leg-like appendages with various kinds of anatomical structures were eventually developed, and methods of movement that use such appendages then became broadly used by a wide range of animals. Furthermore, it has been discovered that a common gene is involved in the formation of such leg-like appendages in most protostomes and deuterostomes [24].

Here, a fundamental question can be raised. How did legged locomotion evolve from limbless locomotion? In the same way that Hamlet cannot be created by the random typing of a monkey, such a complex organ cannot be created only by the repetition of a random mutation. Within the naive framework of evolutionary theory based on the random mutation of genes and natural selection for individuals, evolution of the leg and its use as a method of movement can be summarized as follows: (i) an appendage/outgrowth from the body wall suddenly appeared by means of a mutation, (ii) a method of movement using such appendages (i.e. walking) was subsequently acquired, and (iii) further evolution of the legs and the method of movement was achieved through a long sequence of mutations and natural selection. However, in this scenario, we encounter difficulties in explaining how the new body component appearing in (i) acquired its adaptive functionality quickly in the face of severe natural selection. The establishment of any complex organ and its function, such as legs and movement, requires the support and cooperation of many other components. Therefore, an organ has a particular function only if there is an existing structure on which to work (a comparison can be made with co-adapted genotypes [25]). Based on the results in this study, we propose a hypothetical scenario of the evolution of legged locomotion as follows: when a leg-like appendage appears on the body wall of an animal, the appendage can function immediately, because it matches and cooperates with a pre-existing method of movement and its mechanical constraints. That is, chance favours the prepared. Limbless crawlers moved in a manner similar to walking before developing legs. We should note that rigorous ontogenetic or phylogenetic evidences for this scenario still remain to be found.

Acknowledgements. We thank Dr Hiroyuki Munebara at Usuji Fisheries Station (Hakodate, Japan) for the use of their facilities and for supplying C. stelleri.

Funding statement. This work was supported by the Strategic Japanese–Swedish Research Cooperative Programme (Japan Science and Technology Agency) and by a grant-in-aid for Scientific Research on Innovative Area from MEXT (25111726).

Endnotes

1In this virtual state, the friction coefficient values need not be identical for all blocks. However, without loss of generality, we can assume they are identical in the following arguments.

2In this modelling, anchoring and unanchoring are symmetrically identical operations. Whatever the friction coefficient in the frictional
standard state (called default value of friction coefficients) is, they can independently achieve an equivalent effect for a directional locomotion if they occur at their respective suitable timing. However, considering more realistic context, such as physical constraint of crawlers, which of them easily operates may change depending on the default value of friction coefficients. The followings are probable. If the default value is sufficiently small or large, anchoring or unanchoring is preferred than the other respectively. On the other hand, if the default value of friction coefficients is, they can independently achieve an equivalent effect for a directional locomotion if they occur at their respective suitable timing. However, considering more realistic context, such as physical constraint of crawlers, which of them easily operates may change depending on the default value of friction coefficients. The followings are probable.

This dependency of the relation between \(x_n \) and \(x'_n \) on the direction of the waves can be seen more clearly when more concrete settings are used. For example, we can assume that the phase difference between adjacent blocks is a constant \(\theta_1 = \theta_2 + n\Delta \theta \), where the sign of \(\Delta \theta \) determines the wave direction (i.e. \(\Delta \theta > 0 \) and \(\Delta \theta < 0 \) give antero-posterior wave and postero-anterior wave, respectively). Then, we have \(x_n = (u_0 + \sin(n\Delta \theta))x'_n \). This shows that the relation between the density of the wave and the velocity of the block depends on the direction of the wave, which is determined by the sign of \(\Delta \theta \).

References