Proton transfer reactions and hydrogen-bond networks in protein environments

Hiroshi Ishikita¹ and Keisuke Saito¹,²

¹Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka 560-0043, Japan
²Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKₐ values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKₐ values is opposite to that required for the formation of strong salt bridges, which play a key role in protein–protein interactions. To satisfy the pKₐ matching condition and allow for proton transfer reactions, proteins often adjust the pKₐ via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.

1. Introduction

Proton transfer reactions play key roles in energy conversion processes in biological systems, including photosynthesis and respiration. In the O₂-evolving complex, photosystem II (PSII), removal of subproduct protons from the catalytic site within the protein (2H₂O → O₂ + 4H⁺ + 4e⁻) is essential for the water-splitting reaction to proceed (see [1] for the most recently reported crystal structure). Proton pump proteins, bacteriorhodopsin for example, are linked to ATP synthase, as a proton gradient is the driving force for ATP synthesis [2–4]. In contrast to the bulk solvent, where proton carriers, for example water molecules, are readily available, in protein environments, the presence of such molecules is strictly limited. In order to overcome this, proteins use a proton transfer pathway comprised ionizable residues, polar residues and water molecules. These polar groups form an H-bond network. Thus, it is essential to understand H-bond energetics before we focus on specific proton transfer pathways in protein environments.

2. Classification of H-bonds and their characteristics

A typical H-bond consists of donor and acceptor moieties, with their characters differentiated by their pKₐ values (table 1). As widely observed in ionizable groups, a proton is more likely to populate the moiety with the higher pKₐ value out of the two, with this serving as the H-bond donor, and that with the lower pKₐ serving as the H-bond acceptor.

2.1. H-bond length and NMR chemical shift

It has been suggested that a strong H-bond results in a more downfield¹¹H nuclear magnetic resonance (NMR) chemical shift. According to the classification of H-bonds by Jeffrey [12] or Frey [13], single-well H-bonds (or

¹¹H nuclear magnetic resonance (NMR) chemical shift: The chemical shift is a measure of the magnetic shielding of a nucleus in a magnetic field. It is used to identify and characterize chemical structures in molecular and materials science. In the context of proteins, it helps to understand the structure and dynamics of the protein backbone.

Royal Society Publishing

© 2013 The Author(s) Published by the Royal Society. All rights reserved.
symmetrical H-bonds [14]) are typically very short, with O–O distances of 2.4–2.5 Å, and display 1H NMR chemical shifts (δH) of 20–22 ppm [13] (figure 1). Low-barrier H-bonds (LBHBs) are longer at 2.5–2.6 Å, with δH values of 17–19 ppm [13], whereas weak H-bonds are even longer, with δH values of 10–12 ppm [13].

2.2. pKₐ values

According to Perrin & Nielson [8] or Schutz & Warshel [15], the definition of an LBHB is vague. Schutz & Warshel [15] concluded that LBHBs cannot be defined solely by their length or strength and that only energy-based evaluations can be used to determine the type of H-bond that is present. In particular, the pKₐ values of the donor and acceptor moieties are important in determining the energy barrier required for moving an H atom between them [15]. In the original reports by Frey et al. [16] and Cleland & Kreevoy [17], it was stated that an LBHB may form when the pKₐ difference between donor and acceptor moieties is nearly zero (matching pKₐ).

Interestingly, it is noteworthy that the matching pKₐ condition is the situation where proton transfer reactions between the two moieties are most efficient [5–7] (table 1). Under this condition, coupling of the proton donor/acceptor moieties is the greatest, leading to the formation of a short H-bond and a decrease in the energy barrier for the proton transfer.

On the other hand, it is widely recognized that a salt bridge is a strong H-bond and plays a key role in electrostatic interactions at the protein surface. In many cases, salt bridges are formed between acidic and basic residues, with low and high pKₐ values, respectively. Thus, the matching pKₐ condition required for LBHB formation is exactly opposite to that required for salt-bridge formation (table 1). This implies that LBHBs, which have less salt-bridge-like character (i.e. large and small (nearly zero) pKₐ difference for salt-bridge and LBHB, respectively), are not necessarily strong, even if the donor–acceptor distance is short, because concentrated charge, which is more pronounced in salt bridges owing to the large pKₐ difference for the H-bond donor and acceptor moieties, is solvated more strongly than a distributed charge, which is more pronounced in LBHBs [9,18]. In particular, when the matching pKₐ condition is only transiently satisfied in the protein environment, for example, in intermediate states that are formed by oxidation/reduction or photoisomerization, LBHBs are unstable, where protein preorganized dipoles (e.g. backbone dipoles) are present [9].

<table>
<thead>
<tr>
<th></th>
<th>single-well H-bond, LBHB</th>
<th>standard H-bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>potential shape</td>
<td>symmetric</td>
<td>asymmetric</td>
</tr>
<tr>
<td>pKₐ difference</td>
<td>close to zero</td>
<td>present</td>
</tr>
<tr>
<td>donor–acceptor length</td>
<td>short</td>
<td>long</td>
</tr>
<tr>
<td>coupling</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>proton transfer</td>
<td>most efficient</td>
<td>unfavourable</td>
</tr>
<tr>
<td>salt-bridge character</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>stability (in protein)</td>
<td>less stable</td>
<td>stable</td>
</tr>
</tbody>
</table>

Table 1. Comparison between symmetric H-bonds and asymmetric H-bonds.

Figure 1. Overview of typical potential energy profiles: (a) standard H-bonds (asymmetric double-well), typically with an Odonor–O acceptor distance greater than 2.6 Å; (b) LBHB, typically with an Odonor–O acceptor distance of 2.5–2.6 Å; and (c) single-well (ionic) H-bonds, typically with an Odonor–O acceptor distance of less than 2.5 Å [8]. The corresponding O–N distances are generally greater than O–O distances.
2.3. What determines pK_a values in proteins?

2.3.1. Solvation

‘pK_a’ corresponds to proton affinity of the donor/acceptor moieties in H-bonds. In some cases, one might consider that to refer to H-bonds, a proton affinity description rather than a pK_a would be more apt for H-bonds that are not exposed to the solvent. On the other hand, it should also be noted that the solvation energy term is also included in pK_a. pK_a can be defined for any titratable site in proteins, regardless of whether it is practically difficult to measure in experiments (in particular, if it is allowed to define a proton affinity of the same sites). For a single molecule in the bulk solvent, the pK_a value is predominantly determined by the molecular structure and the solvation energy. Thus, the pK_a value can be calculated quantumchemically, by using the atomic coordinates of the molecule and considering the solvation energy [19,20], as is the same for the redox potential for a redox-active site [21]. In a protein environment, although one also has to consider (i) the availability of the solvation and (ii) electrostatic interactions with other groups in addition to its own pK_a value [22], it is also possible to calculate the pK_a value at any titratable site as far as the reasonable atomic coordinates are available.

In general, in the inner hydrophobic core of a protein, the absence of the availability of solvation (rather than repulsive interactions) is the major contributor towards destabilizing the charged groups [23]. In a hydrophobic environment with less chance of solvation for a charged species, the less charged state is energetically more favourable, i.e. protonated state for acidic residue and deprotonated state for basic residues. Thus, the absence of the solvation energy leads to an increase and a decrease in pK_a for acidic and basic groups, respectively (e.g. [22–27]). For example, a catalytic lysine (Lys115) in the active site of the acetocatate decarboxylase (AADase) has long been known to be deprotonated. Using a reporter group that can approach the catalytic site in the protein, the pK_a value of Lys115 (pK_a(Lys115)) was formerly measured to be 5.96 [28]. More recently, using atomic coordinates of the X-ray crystal structures [26] with consideration of protonation states of all of the titratable sites in the protein, pK_a(Lys115) values were calculated to be 5.73 for the *Clostridium acetobutylicum* AADase (CaAAD) and 5.96 for the *Chromobacterium violaceum* AADase [27], significantly low with respect to pK_a(Lys) = 10.4 in water [29]. In general, protein atomic charges can shift the pK_a in the inner core of the protein more significantly than in the bulk water. In CaAAD, the protein atomic charges (including H-bond interaction and long-distance electrostatic interaction) contributed to the increase in pK_a(Lys115) of 3.6 [27]. However, the loss of solvation energy more significantly contributed to the decrease in pK_a(Lys115) of 8.3 [27]. As a consequence, pK_a(Lys115) is considerably low, approximately 6 in AADase [26–28]. The same reason also holds true for the decrease in pK_a(NH$_3$/NH$_4^+$) (i.e. leading to formation of NH$_3$) at the binding sites along the inner pore of the ammonia transport protein AmtB [24,25].

2.3.2. Protein charges (electrostatic interactions including H-bonds)

pK_a is also affected by electrostatic interaction including H-bonds that originate from the atomic charges of a protein. As donation of a single H-bond typically shifts the redox potential by approximately 60–120 mV, so does the pK_a by approximately 1–2 unit in a protein environment. Functionally important redox/titratable active sites are often H-bonded in the protein environment. Donation of an H-bond to a titratable site leads to stabilization of the deprotonated (reduced) state, resulting in the decrease in the pK_a (increase in the redox potential). Flavodoxin from *Clostridium beijerinckii* has a flavin mononucleotide (FMN) as a redox-active group. FMN has also the N5 atom as a protonatable site. pK_a(N5) has been measured to be greater than 13.9 [30] or greater than 13 [31] in the native flavodoxin. On the other hand, the experimentally measured value of pK_a(N5) is significantly lowered to 11.3 in the G57T mutant flavodoxin [30]. To understand the difference in pK_a(N5), by solving the linear Poisson–Boltzmann equation with consideration of the protonation states of all titratable sites in the entire flavodoxin, pK_a(N5) has been calculated to be 13.9 for the native flavodoxin and 11.7 for the G57T mutant flavodoxin [32]. The difference $pK_a(N5)$ has been identified to be the difference in the backbone conformation near the flavin-binding site for the native and G57T mutant proteins [32]. The N5 atom has the backbone carbonyl O atom as an H-bond acceptor in the native crystal structure, whereas the backbone carbonyl O atom is flipped away from the N5 atom in the G57 mutant crystal structure [30]. The incapability of forming an H-bond between N5 and the backbone O atom leads to destabilization of the protonated FMN form, which lowers pK_a(N5) in the G57 mutant by approximately 2 pK_a units [32]. Thus, H-bond patterns determine the pK_a value of the active site in proteins.

pK_a or redox potential is also affected by electrostatic interactions other than H-bonds. In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox-active cofactors, which form an electron transfer pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin is approximately 170 mV, a striking difference [33,34]. The new crystal structures for XDH and XO confirmed the side chain orientation in detail [35]. In particular, the two crystal structures revealed the difference in the protein environment of the FAD-binding site and the H-bond network for XDH and XO. The majority of the redox potential difference between XDH and XO originates from a conformational change in the highly charged loop at positions 423–433 near the flavin-binding site, causing the differences in stability of the semiquinone state. The difference in the redox between XDH and XO is 150 mV when calculated over the region of residues 422–433. The influence of the protein volume (that prevents access to the flavin from water) on the redox potential is equal in XDH and XO [35].

In summary, pK_a values (and redox potential values) in a protein environment can be sufficiently described by the protein geometry as long as the reliable atomic coordinates are available. The calculated value may tend to deviate from the experimentally measured value, in case the geometry of the crystal structure does not represent the functionally relevant conformation. When a number of different conformations are energetically possible, as typically indicated by large disorder of the atomic coordinates (i.e. large B-factor), each conformation has each pK_a value, resulting...
in large deviation of the \(pK_a\) values. Of course, this is often not the case for enzymatic active sites, where the function is realized by specific H-bond patterns and a specific \(pK_a\) (or redox potential) value has been experimentally identified (e.g. proteins discussed above).

2.4. Proposed roles of low-barrier H-bonds

The catalytic power of enzymes is owing to the stabilization of the transition state relative to bulk water [18]. Thus, H-bonds in the catalytic site play an important role in the stabilization of the transition state. The LBHB was originally proposed to possess covalent bond-like character, significantly stabilizing the transition state, and facilitating enzymatic reactions [16,17]. In such a bond, the atomic charges of the H-bond donor and acceptor moieties will be more delocalized than those in a conventional H-bond. An advantage that the catalytic site of the protein possesses in contrast to the bulk water is the availability of preorganized dipoles, for example polar or charged side chains, in addition to the protein backbone itself, which can electrostatically stabilize the transition state. If the H-bond is an LBHB (i.e. has low polarity), it will lose the electrostatic advantage owing to its more delocalized atomic charge [15,18].

2.5. \(\delta_H\) for compounds

\(\delta_H\) is large for \(\text{O}_{\text{donor}}-\text{H}\)–\(\text{O}_{\text{acceptor}}\) H-bonds, where the H atom migrates more towards the acceptor moiety. In general, migration of the H atom is more pronounced as the \(\text{O}_{\text{donor}}\)–\(\text{O}_{\text{acceptor}}\) distance is reduced [36]. Thus, \(\delta_H\) is a useful parameter for evaluating the strength of H-bonds.

In order to evaluate the accuracy of the quantumchemically calculated \(\delta_H\), we calculated \(\delta_H\) for maleate and compounds 1–4 (figure 2), which are all thought to contain an LBHB [37]. The calculated \(\delta_H\) values were found to be close to the experimentally measured values, with discrepancies of only approximately 1 ppm or less (table 2) [38]. Hence, the calculated \(\delta_H\) values should be considered at this accuracy level. There is a tendency that the discrepancy between the measured values and the calculated values is small for short H-bonds [38]. This predominantly originates from the relevance of the quantumchemically optimized geometries of the molecules used for the \(\delta_H\) calculations. In H-bonds with long donor–acceptor distances, the two moieties are less strongly coupled, allowing more deviations in the H-bond geometries from those that were quantumchemically optimized.

The calculated OHO-bond geometries and the NMR chemical shifts were evaluated using the correlation proposed by Limbach et al. [36]. The geometric correlation of the \(\text{O}_{\text{acceptor}}\)–\(\text{H}\)–\(\text{O}_{\text{donor}}\) bond between the acceptor–hydrogen (Oacceptor–H) distance \(r_1\) and the donor–hydrogen (Odonor–H) distance \(r_2\) was obtained by

\[
q_2 = 2q_0^2 + 2q_1 + 2b \ln \left[1 + \exp\left(-\frac{2q_1}{b}\right)\right],
\]

\[
b = \frac{2q_{\text{min}} - 2r_0}{2\ln 2},
\]

\[
q_1 = \frac{r_1 - r_2}{2},
\]

and \(q_2 = r_1 + r_2\),

where \(q_{\text{min}}\) represents a minimum value corresponding to the minimum \(\text{O}_{\text{acceptor}}\)–\(\text{O}_{\text{donor}}\) distance in the case of a linear H-bond, and \(r_0\) is the equilibrium distance in the fictive free dative

<table>
<thead>
<tr>
<th>entry</th>
<th>exp. (\delta_H)</th>
<th>calc. (\delta_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>maleate</td>
<td>21.5</td>
<td>21.8</td>
</tr>
<tr>
<td>1</td>
<td>11.0</td>
<td>12.1</td>
</tr>
<tr>
<td>2</td>
<td>12.2</td>
<td>13.1</td>
</tr>
<tr>
<td>3</td>
<td>14.9</td>
<td>15.7</td>
</tr>
<tr>
<td>4</td>
<td>15.6</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Oxo(Odonor–H) value has been experimentally identified in large deviation of the \(\delta_H\) values. Of course, this is often not the case for enzymatic active sites, where the function is realized by specific H-bond patterns and a specific \(pK_a\) (or redox potential) value has been experimentally identified (e.g. proteins discussed above).

2.4. Proposed roles of low-barrier H-bonds

The catalytic power of enzymes is owing to the stabilization of the transition state relative to bulk water [18]. Thus, H-bonds in the catalytic site play an important role in the stabilization of the transition state. The LBHB was originally proposed to possess covalent bond-like character, significantly stabilizing the transition state, and facilitating enzymatic reactions [16,17]. In such a bond, the atomic charges of the H-bond donor and acceptor moieties will be more delocalized than those in a conventional H-bond. An advantage that the catalytic site of the protein possesses in contrast to the bulk water is the availability of preorganized dipoles, for example polar or charged side chains, in addition to the protein backbone itself, which can electrostatically stabilize the transition state. If the H-bond is an LBHB (i.e. has low polarity), it will lose the electrostatic advantage owing to its more delocalized atomic charge [15,18].

2.5. \(\delta_H\) for compounds

\(\delta_H\) is large for Odonor–H–Oacceptor H-bonds, where the H atom migrates more towards the acceptor moiety. In general, migration of the H atom is more pronounced as the Odonor–Oacceptor distance is reduced [36]. Thus, \(\delta_H\) is a useful parameter for evaluating the strength of H-bonds.

In order to evaluate the accuracy of the quantumchemically calculated \(\delta_H\), we calculated \(\delta_H\) for maleate and compounds 1–4 (figure 2), which are all thought to contain an LBHB [37]. The calculated \(\delta_H\) values were found to be close to the experimentally measured values, with discrepancies of only approximately 1 ppm or less (table 2) [38]. Hence, the calculated \(\delta_H\) values should be considered at this accuracy level. There is a tendency that the discrepancy between the measured values and the calculated values is small for short H-bonds [38]. This predominantly originates from the relevance of the quantumchemically optimized geometries of the molecules used for the \(\delta_H\) calculations. In H-bonds with long donor–acceptor distances, the two moieties are less strongly coupled, allowing more deviations in the H-bond geometries from those that were quantumchemically optimized.

The calculated OHO-bond geometries and the NMR chemical shifts were evaluated using the correlation proposed by Limbach et al. [36]. The geometric correlation of the Oacceptor–H–Odonor bond between the acceptor–hydrogen (Oacceptor–H) distance \(r_1\) and the donor–hydrogen (Odonor–H) distance \(r_2\) was obtained by

\[
q_2 = 2q_0^2 + 2q_1 + 2b \ln \left[1 + \exp\left(-\frac{2q_1}{b}\right)\right],
\]

\[
b = \frac{2q_{\text{min}} - 2r_0}{2\ln 2},
\]

\[
q_1 = \frac{r_1 - r_2}{2},
\]

and \(q_2 = r_1 + r_2\),

where \(q_{\text{min}}\) represents a minimum value corresponding to the minimum Oacceptor–Odonor distance in the case of a linear H-bond, and \(r_0\) is the equilibrium distance in the fictive free dative unit OH [36].

The correlation between the OHO-bond geometry and the \(^1H\) NMR chemical shift was obtained from

\[
\delta_H = \delta_{\text{H}}^{\text{cal}} + \Delta_{\text{H}}(4p_1p_2^m),
\]

\[
p_1 = \exp\left[-q_1 + q_2/2 - p_0^m/b\right]
\]

\[
p_2 = \exp\left[-q_1 + q_2/2 - p_0^m/b\right],
\]

where \(\delta_{\text{H}}^{\text{cal}}\) and \(\Delta_{\text{H}}\) represent the limiting chemical shifts of the separate fictive OH groups and the excess chemical shift of the quasi-symmetric complex, respectively, and \(m\) is an empirical parameter. \(q_2\) is taken from equation (2.1).

Interestingly, the obtained H-bond geometries of all compounds fitted exactly with the proposed correlation curve (equation (2.1)) [36] (figure 3), demonstrating that the methodology from [36] is able to reasonably reproduce the quantumchemically optimized Oacceptor–H and Odonor–H distances once the Oacceptor–Odonor distance is specified.

![Figure 2](http://rsif.royalsocietypublishing.org/)

Figure 2. Compounds listed in table 2.
3. Is a low-barrier H-bond stable or unstable?

Short H-bonds in photoactive yellow protein

Photoactive yellow protein (PYP) serves as a bacterial photoreceptor, in particular, as a sensor for negative phototaxis to blue light [40]. The photoactive chromophore of PYP is p-coumaric acid (pCA), which is covalently attached to Cys69 [41]. In the PYP ground state, the pCA chromophore exists as a phenolate anion [42–44], and analysis of its crystal structure has revealed that it is H-bonded with protonated Tyr42 and protonated Glu46 (figure 4). Tyr42 is further H-bonded with Thr50. Structural analysis has also suggested that Glu46 is protonated and pCA is ionized in the PYP ground state, pG [46,47].

Recently, neutron diffraction analysis has been used to assign the H (or deuterium) atom positions of PYP [39]. It was found that in the case of the Glu46–pCA pair, an H atom was situated 1.21 Å from Glu46 and 1.37 Å from pCA, almost at the midpoint of the O\textsubscript{Glu46}–O\textsubscript{pCA} bond (2.57 Å) (figure 4). From this unusual H atom position, the H-bond between Tyr42 and protonated Glu46 (figure 4) was obtained from solution 1H NMR studies of PYP [49]. It was also shown that Glu46 is protonated and pCA is ionized in the PYP ground state, pG [46,47].

As mentioned earlier, an LBHB forms when the pK\textsubscript{a} difference between donor and acceptor moieties is nearly zero. If this is the case, the identification of an LBHB with a single minimum potential can be valid only if the minimum is at the centre of the O\textsubscript{Glu46}–O\textsubscript{pCA} bond (i.e. the pK\textsubscript{a} values of the two moieties are nearly equal) as suggested by Schutz & Warshel [15]. The H atom position in the O\textsubscript{Glu46}–O\textsubscript{pCA} bond in the neutron diffraction study appears to satisfy the criterion for an LBHB, which should correspond to similar pK\textsubscript{a} values for Glu46 and pCA. However, if this was the case, then it would contradict the Glu46 being protonated and the pCA being deprotonated in the PYP ground state, as suggested in a number of previous experimental studies [42–44,48]. In NMR studies, a δ\textsubscript{H} of 15.2 ppm was assigned to protonated Glu46 [49]. This is smaller than that for single-well H-bonds (20–22 ppm [13]) or even for LBHB (17–19 ppm [13]). The actual H atom position that corresponds to a δ\textsubscript{H} of 15.2 ppm in O\textsubscript{Glu46}–O\textsubscript{pCA} was not clarified.

3.1. δ\textsubscript{H} for photoactive yellow protein

Using the QM/MM optimized geometry, we calculated the δ\textsubscript{H} value for the O\textsubscript{Glu46}–O\textsubscript{pCA} bond and found it to be 14.5 ppm (PDB, 2ZOI) [39] or 14.6 ppm (PDB, 1OTB [50]) [38]; these values differ by 0.6–0.7 ppm from the experimental values of 15.2 ppm [49]. This discrepancy may also reflect the distribution of H-bond lengths, even in these high-resolution (approx. 1 Å) crystal structures of PYP (reviewed in [50]).

We analysed the dependence of δ\textsubscript{H} on the H atom position. The origin of the downfield character for the chemical shift is considered to be owing to attenuation of the electronic shielding around the proton owing to the two electronegative donor and acceptor atoms [51]. The maximum δ\textsubscript{H} value of approximately 20 ppm was observed near the centre of O\textsubscript{Glu46}–O\textsubscript{pCA} [38]. The δ\textsubscript{H} of approximately 15 ppm that was obtained from solution 1H NMR studies of PYP [49] could not be obtained near to the centre of O\textsubscript{Glu46}–O\textsubscript{pCA}, but only at the Glu46 or pCA moieties [38].

On the other hand, the H atom positions calculated from the neutron diffraction study [39] yielded a δ\textsubscript{H} value of 19.7 ppm for O\textsubscript{Glu46}–O\textsubscript{pCA} (figure 3) [38]. This value satisfies the criterion of LBHBs proposed by Frey (δ\textsubscript{H} of 17–19 ppm [13]). The fact that an H atom position near the midpoint of O\textsubscript{Glu46}–O\textsubscript{pCA} resulted in a δ\textsubscript{H} of 19.7 ppm for a typical LBHB [13] is also a clear validation of the criterion proposed by Schutz & Warshel [15], i.e. the minimum of the potential energy curve for an LBHB is at the centre of the O\textsubscript{Glu46}–O\textsubscript{pCA} bond. However, the δ\textsubscript{H} of 19.7 ppm is clearly larger...
than the value of 15.2 ppm obtained from the NMR studies [49]. Hence, the H atom positions obtained from the neutron diffraction study [39] resulted in an overestimation of the chemical shift for OGlu46 –O

PDB: 1TS7

<table>
<thead>
<tr>
<th>energy</th>
<th>pG</th>
<th>Glu46</th>
<th>pCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard H-bond</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Changes in the H-bond pattern photoinduced by trans–cis isomerization of pCA, and associated changes in the potential energy profile of the Glu46 – pCA H-bond in PYP. (Online version in colour.)

Notably, Steiner [52] and Limbach et al. [36] also proposed the correlation between δ1 and the H-bond geometry; δ1 could be reproduced from (r1 – r2)/2 (or alternatively r1 + r2), using equations (2.1) and (2.2). The calculated δ1 values were in agreement with those estimated from the proposed correlation curve [36], demonstrating that δ1 can be reproduced if a reasonable H-bond geometry is provided (figure 3). From the δ1 correlation curve, the r1 of 1.37 Å, and r2 of 1.21 Å reported for OGlu46 –O

pR–(proton transfer and large conformational changes) → pB

pK’

Glu46 > pCA

Tyr42

Glu46

2.60

pB

pCA

pB

pR

pRCW

pG

PT

ICP

PDB: 1TS7

H-bond pattern change

→ single-well H-bond

→ PT

H-bond breakage

→ conformational change

4. Formation of a short H-bond photoinduced by trans–cis isomerization, leading to proton transfer: the photoactive chromophore in photoactive yellow protein

Upon exposure to blue light, PYP undergoes the following photocycle: pG (ground state) → P* –(trans–cis isomerization) → l0 → l6 → pR–(proton transfer and large conformational change) → pB → pG [55–57]. The pR to pB transition has not been reported to date. The QM/MM calculations reproduced the unusually short H-bond distance (2.49 Å) on the basis of the pRCW structure (1.60 Å resolution) [58], which may argue against the presence of an LBHB in the ground state that is proposed in [39]. In general, an H-bond donor–acceptor distance can be at its shortest when the pKα difference between donor and acceptor moieties is nearly zero, owing to maximized coupling between them. This is why LBHBs are shorter than standard (asymmetric double-well) H-bonds (figure 1) [8,9,15,54]. If the presence of the shorter O

Glu46 –O

pCA bond in the pRCW state relative to the ground state is plausible, this would suggest that the matching pKα condition between the H-bond donor and acceptor moieties is not satisfied in the ground state, or is at least less likely than in the pRCW state.

The QM/MM calculations reproduced the unusually short H-bond distance (2.49 Å) on the basis of the pRCW structure, only with the assumption that Tyr42 does not donate an H-bond to pCA (figure 5) [10]. The standard O

Glu46 –O

pCA H-bond geometry (i.e. Tyr42 donates an H-bond to pCA) yielded a bond length of 2.60 Å, even in QM/MM calculations of the pRCW structure. These results confirm that in the pRCW crystal structure, Tyr42 is flipped away from pCA, rather than donating an H-bond to it.

The existence of the unusually short H-bond appears to be plausible not only in the pRCW structure [58], but also in the pR species [55–57] observed in the spectroscopic studies.

Figure 5. Changes in the H-bond pattern photoinduced by trans–cis isomerization of pCA, and associated changes in the potential energy profile of the Glu46 – pCA H-bond in PYP. (Online version in colour.)

4. Formation of a short H-bond photoinduced by trans–cis isomerization, leading to proton transfer: the photoactive chromophore in photoactive yellow protein

Upon exposure to blue light, PYP undergoes the following photocycle: pG (ground state) → P* –(trans–cis isomerization) → l0 → l6 → pR–(proton transfer and large conformational change) → pB → pG [55–57]. The pR to pB transition has not been reported to date. The QM/MM calculations reproduced the unusually short H-bond distance (2.49 Å) on the basis of the pRCW structure, only with the assumption that Tyr42 does not donate an H-bond to pCA (figure 5) [10]. The standard O

Glu46 –O

pCA H-bond geometry (i.e. Tyr42 donates an H-bond to pCA) yielded a bond length of 2.60 Å, even in QM/MM calculations of the pRCW structure. These results confirm that in the pRCW crystal structure, Tyr42 is flipped away from pCA, rather than donating an H-bond to it.

The existence of the unusually short H-bond appears to be plausible not only in the pRCW structure [58], but also in the pR species [55–57] observed in the spectroscopic studies.
FTIR analysis has suggested that the H-bond between Glu46 and pCA becomes stronger in the pR relative to the pG, as suggested by the downshift in the C=O stretching frequency of protonated Glu46 [43]. As the shortening of an H-bond donor–acceptor distance leads to migration of the H atom towards the acceptor moiety (e.g. [38,61]), the observed downshift in the C=O stretching frequency of Glu46 is consistent with the presence of the unusually short O\textsubscript{Glu46}–O\textsubscript{CA} bond in the pRCW structure. The H-bond pattern of Tyr42 and pCA in the O\textsubscript{Glu46}–O\textsubscript{CA} length is also evident in studies of the Y42F mutant. The Y42F crystal structure was found to have a shorter O\textsubscript{Glu46}–O\textsubscript{CA} bond (2.51 Å [62]) compared with that of the native PYP (2.59 Å [50]), and the C=O stretching frequency of protonated Glu46 in the Y42F mutant was downshifted relative to the wild-type PYP, as seen in the FTIR studies [63].

4.1. How does the short H-bond appear in FTIR studies?
Interestingly, the potential energy curve of the O\textsubscript{Glu46}–O\textsubscript{CA} bond (2.49 Å) in the pRCW crystal structure resembles that of a typical single-well H-bond; the barrierless potential for the proton transfer is an indication of the pRCW intermediate being ready for the proton transfer (figure 5). As observed in FTIR studies, the C=O stretching frequency for protonated Glu46 is downshifted to 1732 cm\(^{-1}\) in pR relative to 1740 cm\(^{-1}\) in pG, suggesting that the H atom in the O\textsubscript{Glu46}–O\textsubscript{CA} bond remains in the Glu46 moiety (i.e. can interact with Glu46), but simultaneously migrated towards the pCA moiety [43], as in the case for a single-well H-bond. Indeed, in FTIR studies, the existence of a single-well H-bond has already been proposed [43]; a stronger H-bond in pR relative to pG lowers the energy barrier for proton transfer from Glu46 to pCA (see fig. 4 in [43]). Note that the O\textsubscript{Glu46}–O\textsubscript{CA} H-bond is absent in the pB state [43], and in the solution structures of the pB state [59]. This indicates that the unusually short H-bond is not stable in the protein environment, in particular if the matching pK\(_a\) condition for the H-bond donor and acceptor moieties is satisfied only transiently near the protein surface. (For comparison, see also the case of an unusually short H-bond between D1-Tyr161 and D1-His190 in PSII [1,64]; here the matching pK\(_a\) condition is satisfied easily in the protein inner core, without tuning the original pK\(_a\) values of the donor and acceptor moieties. Discussed later, see ‘Presence of an unusually short, but stable H-bond in redox-active D1-Tyr161 (TyrZ) in photosystem II.’)

4.2. Is the short H-bond in the pRCW state unusually strong?
If the short O\textsubscript{Glu46}–O\textsubscript{CA} H-bond was extremely strong, the pRCW intermediate would be highly stable and the subsequent pB state would not form on such a timescale. It should also be noted that the lifetime of hundreds of microseconds for the pRCW state is owing to the large structural change rather than proton transfer from Glu46 to pCA. In addition, in a single-well H-bond, movement of a proton between the donor and acceptor moieties is not directly associated with breakage of the H-bond. Breakage of the short O\textsubscript{Glu46}–O\textsubscript{CA} H-bond can occur as a result of the large structural change, which is driven by the photon energy stored in the system [65]. Hence, the pR intermediate can lower the energy required to proceed to the pB state by eliminating the unusually short

![Figure 6. Photoinduced electron transfer (red arrows) and associated proton transfer (blue arrows) reactions in the D1 (red) and D2 (blue) heterodimer protein subunits of PSII. (Online version in colour.)](http://rsif.royalsocietypublishing.org/)

\[
\text{O}_{\text{Glu46}}-\text{O}_{\text{CA}} \text{ H-bond of less than } 2.5 \text{ Å. In terms of the local H-bond network of pCA, formation of the unusually short H-bond is energetically allowed (or favoured) at the stage of the pR intermediate; however, this is not energetically the lowest state of the entire protein, which explains why the pB state is formed.}
\]

5. Formation of a short H-bond induced by electron transfer, leading to proton transfer: electron acceptor quinone in photosystem II
The core of the PSII reaction centre is composed of D1/D2, a heterodimer of protein subunits that contains the cofactors that are involved in photochemical charge separation, quinone reduction and water oxidation (figure 6). These reactions are driven by the absorption of light with a wavelength of approximately 680 nm by the P680 pigment. P680 is composed of four chlorophyll \(a\) (Chl) molecules, \(\text{P}_{\text{D1}}/\text{P}_{\text{D2}}\), \(\text{Chl}_{\text{D1}}/\text{Chl}_{\text{D2}}\), and two phycocyanin \(a\) molecules (\(\text{Pheo}_{\text{D1}}/\text{Pheo}_{\text{D2}}\)). Excitation of P680 initially leads to the formation of a range of charge-separated states, with the \(\text{Chl}_{\text{D1}}^{+} \text{Pheo}_{\text{D2}}^{-}\) state dominating. After a short time, the secondary radical pair, \(\text{[P}_{\text{D1}}/\text{P}_{\text{D2}}]\^{+} \text{Pheo}_{\text{D2}}^{-}\), is formed in nearly all of the centres. This state is stabilized by electron transfer to the first quinone, \(\text{Q}_A\), and by electron donation from a Tyr residue, \(\text{D1-Tyr161 (TyrZ)}\), to \(\text{P}_{\text{D1}}^{+}\). TyrZ, then oxidizes the \(\text{Mn}_{\text{CaO}_5}\) cluster, which catalyses the subsequent water-splitting reaction. \(\text{QA/Q}_A^{-}\) acts as a 1-electron redox couple, accepting electrons from \(\text{Pheo}_{\text{D1}}^{+}\), and donating to the second quinone, \(\text{Q}_B\), without undergoing
protonation itself. By contrast, Q_B^- reduction involves two consecutive 1-electron reduction reactions, with a series of associated proton uptake reactions (reviewed in [66–71]).

Q_B is located near the non-haem Fe^{2+} and the ligand to the Fe^{2+}, $\text{D1-His}215$, donates an H-bond to the Q_B carbonyl O atom that is nearer to the Fe complex ($O_{QB(proximal)}$) (figure 7). The Q_B carbonyl O atom distal to the Fe complex ($O_{QB(distal)}$) accepts an H-bond from D1-Ser264, which itself accepts an H-bond from D1-His252 (figure 7), which is located on the protein surface in contact with the aqueous medium [1,70–73]. It is known that Q_B^- formation is linked to proton uptake [74,75], and comparisons with the structure of the bacterial reaction centre led to the first suggestion that the D1-His252 was the residue undergoing protonation in response to Q_B^- formation [76]. In theoretical studies, it has been proposed that proton uptake by D1-His252 causes reorientation of the hydroxyl group of D1-Ser264 towards the distal Q_B carbonyl group, and stabilizes Q_B^-, facilitating the initial electron transfer from Q_A to Q_B [73].

5.1. First protonation step: conversion of Q_B^- to Q_B^+ via D1-His215 and D1-Ser264

In order to elucidate how the conversion of Q_B^- to Q_B^+ occurs, we analysed the potential energy profiles of the two H-bonds of Q_B^-, $O_{QB(distal)}$–H–O$_{\text{D1-Ser264}}$ and $O_{QB(proximal)}$–H–N$_{\text{D1-His215}}$. In general, Ser is unlikely to deprotonate; however, in the Q_B^- state, the potential energy profile indicates that transfer of a proton from D1-Ser264 to $O_{QB(distal)}$ occurs very easily in an energetically downhill process (figure 8) [11]. This reaction is accompanied by a concerted proton transfer from protonated D1-His252 to D1-Ser264, resulting in the formation of $O_{QB(distal)}$, deprotonated (neutral) D1-His252, and reoriented D1-Ser264 (figure 8). The QM/MM-optimized geometry indicates that the two H-bonds of D1-Ser264, $O_{QB(distal)}$–H–O$_{\text{D1-Ser264}}$ (2.48 Å) and $O_{\text{D1-Ser264}}$–H–N$_{\text{D1-His252}}$ (2.51 Å), are unusually short, especially in the Q_B^- state [11]. These two short H-bonds were only present before the initial proton transfer occurred but they lengthened (to 2.73 and 2.67 Å, respectively [11]) immediately after proton transfer had occurred. Therefore, the presence of an unusually short H-bond indicates that proton transfer between the donor and acceptor moieties is about to occur.

By contrast, the potential energy profile of the $O_{QB(proximal)}$–H–N$_{\text{D2-His214}}$ resembles that of a standard asymmetric double-well H-bond [8], suggesting that the proton transfer from D1-His252 to $O_{QB(proximal)}$ is an energetically uphill process (figure 8). This is primarily because proton release from the singly protonated (neutral) His (pK_a approx. 14 for imidazole [77]) is unfavourable, unlike the doubly protonated (positively charged) His, for which the pK_a is approximately 7. While the pK_a for neutral His is expected to be lowered to some extent by the positive charge and environment around Fe (see below), it is still likely to be relatively high, and thus unfavourable on this step.

5.2. Second proton transfer and an unusually short

H-bond distance between Q_B^+ and D1-His215

As $O_{QB(distal)}$ is protonated upon Q_B^+ formation, the second protonation, i.e. the conversion of Q_B^+ to Q_B^2+ must occur at $O_{QB(proximal)}$ which is H-bonded by N$_8$ of D1-His215 (figure 7). The QM/MM-optimized H-bond distance between $O_{QB(proximal)}$ of Q_B^+ and N$_8$ of D1-His215 was found to be unusually short (2.47 Å) in the Q_B^+ state [11]. Intriguingly, this distance is identical to that in the 1.9 Å structural model of the PSII monomer unit A of the PSII complexes [1]. The corresponding $O_{QB(proximal)}$–N$_8$D1-His215 distances were found to be 2.77 Å in the Q_B state and 2.68 Å in the Q_B^- state [11], both being significantly longer than that in the Q_B^- state [11].

In addition, the corresponding Q_A-side distance ($O_{QA(proximal)}$–N$_{8\text{D2-His214}}$) was 2.78 Å in the 1.9 Å structure [1] and approximately 2.8–2.9 Å in the purple bacterial reaction centre [78]. Given that the Q_B geometry was less well defined than Q_A geometry in the 1.9 Å structure [1], the significance of the short $O_{QB(proximal)}$–N$_8$D2-His215 distance (2.47 Å) should be treated with caution. Furthermore, the Q_B^+ state is expected to be a short-lived intermediate and not a state that would be present in PSII under normal circumstances.

In a typical H-bond with an O–O distance longer than approximately 2.6 Å, the H atom is located near to the
donor moiety owing to the larger pK_a value of the donor relative to the acceptor (with an asymmetric double-well potential H-bond [8], figure 1). On the other hand, according to the classification of H-bonds by Jeffrey [12] or Frey [13], short H-bonds with O–O distances of 2.4–2.5 Å can be classified as single-well (ionic) H-bonds [8] (figure 1). Because O–N distances are generally greater than O–O distances, the OQB(proximal) –N_{D1-His215} of 2.47 Å is an unusually short H-bond and may possess a single-well potential. Remarkably, the calculated potential energy profile for the OQB(proximal) –N_{D1-His215} in the QBH_2 state was found to resemble that of a barrierless single-well (ionic) H-bond, suggesting that the second proton transfer could occur isoenergetically at OQB(proximal) (figure 8). The significantly elongated H–N bond of D1-His215 (1.15 Å) in the QBH_2 state implies that further migration of an H atom towards the acceptor OQB(proximal) moiety (i.e. proton transfer) can easily occur. Indeed, the single-well potential obtained for OQB(proximal) –N_{D1-His215} is symmetric (figure 8), implying that the pK_a difference [15] between D1-His215 deprotonation and QBH_2 protonation is close to zero.

The pK_a for the QH^- to QH_2 protonation for plastocynone is expected to be similar to that measured for ubiquinone in aqueous solution, i.e. 10.7, which is significantly higher than the pK_a of 4.9 found for the protonation of the semiquinone, Q^+ to QH_2 [79,80]. The pK_a for deprotonation of a neutral His is expected to be similar to that for imidazole, i.e. approximately 14 [77]. In PSII, however, the ligation of D1-His215 to the positively charged Fe^{2+} should lower the pK_a of neutral D1-His215. The pK_a of the neutral His ligand to Fe^{2+} in the Rieske [2Fe–2S] cluster has been measured to be approximately 12.5 rather than approximately 14 [81,82]. The ligand environment of Fe^{2+} in PSII is more positively charged than that in the Rieske cluster; thus, the pK_a of neutral D1-His215 deprotonation is expected to be lower than approximately 12.5. In agreement with this, FTIR studies have indicated that deprotonation of D1-His215 occurs in response to pH changes [83]. Overall, the literature...
suggests that the pKₐ value of D1-His215 is likely to be close to that for the QₐH to QₐH₂ protonation, in accordance with the single-well potential obtained here (figure 8).

6. Presence of an unusually short but stable H-bond in redox-active D1-Tyr161 (TyrZ) in photosystem II

The 1.9 Å structure confirmed that the OH group of TyrZ is situated an H-bond distance from the Ne of D1-His190. Most strikingly, the donor–acceptor distance of this H-bond (OTyrZ–N₁₉₀ distance) is very short at 2.46 Å [1] (figures 6 and 9). The assignment of the atoms of TyrZ and D1-His190 appears to be quite reliable because the B-factors of TyrZ and 9). The assignment of the atoms of TyrZ and D1-His190 are in contrast to those observed for the short OGlu46–O values for the two moieties are similar [64]. These features are in contrast to those observed for the short OGlu46–O₇₈ bond in PYP (figure 11). As suggested by Schütz & Warshel [15], the identification of an LBHB with a single minimum potential can be valid only if the minimum is at the centre of the OGlu46–O₇₈ bond (i.e. the pKₐ values of the two moieties are nearly equal). In PYP, even if the donor–acceptor distance is forced to shorten, the shape of the potential curve does not become symmetric and the energy minimum becomes even higher (figure 11) [45]. These comparisons indicate that the short H-bond in PYP is less likely to be an LBHB with respect to the short H-bond in PSII.

In PSII, there are two redox-active Tyr residues [89–91], D1-Tyr161 (TyrZ) and D2-Tyr160 (TyrD), that can provide electrons to [PD1/PD2]+. TyrZ, which has D1-His190 as an H-bond partner, is the kinetically competent Tyr that mediates proton-coupled electron transfer from Mn₃CaO₅ to [PD1/
TyrD is not kinetically competent and plays no obligatory role in enzyme function; indeed, when TyrD is replaced by Phe, enzyme function appeared to be unaffected [90,91]. Nevertheless, TyrD is likely to play specific roles that are beneficial for PSII function (reviewed in [92]).

The neutral radical, TyrD-O–, is formed upon oxidation of TyrD-OH by [PD1/PD2]+ [92–95], with this occurring in the tens of millisecond timescale [96] (see also [97]), which is slow enough that it does not compete with the rapid electron donation from TyrZ (which occurs on the tens to hundreds of nanosecond timescale). In the functional enzyme, TyrD oxidation occurs when the reversible intermediates of the water-splitting cycle, the so-called S2 or S3 states, equilibrate with TyrZ-O–, and thence [PD1/PD2]+ allowing the slow

Figure 10. Energy profiles along proton transfer coordinate the H-bond between D1-Tyr161 (TyrZ) and D1-His190 in PSII. ΔE describes the difference in energy relative to the energy minimum. The red arrow indicates the energy difference from the energy minimum, although not always shown. (Online version in colour.)

Figure 11. Dependence of the potential energy profiles at O_{Glu46}–O_{pCA} = 2.32, 2.57 and 2.77 Å in PYP. The red arrow indicates the energy difference from the energy minimum obtained at O_{Glu46}–O_{pCA} of 2.57 Å. Compare the significantly different energetic properties of the O_{Glu46}–O_{pCA} bond from those of the O_{TyrZ–N_D1-His190} bond in PSII, i.e. figure 10. In contrast to the symmetric shape of the potential energy curves irrespective of the donor–acceptor distances in PSII (figure 10), the shape of the potential energy curve never becomes symmetric in PYP, even if the distance is forced to be short. (Online version in colour.)
electron donation from the TyrD, forming the stable radical, TyrD-O'.

Once formed, TyrD-O' is highly stable for many hours under physiological conditions, giving rise to the term ‘Signal II slow/dark’ describing the EPR signal from TyrD-O' [92–94]. By contrast, TyrZ-O' is reduced by Mn₄CaO₅ on the tens of microsecond to millisecond timescale [93,94]. It has been suggested that the proton released from TyrD-OH upon oxidation remains near to TyrD-O' (e.g. [92]), with the crystallographic models showing a hydrophobic environment that appears to be consistent with this suggestion [1,84,98]. Until fairly recently, it was generally assumed that both TyrZ and TyrD underwent oxidation with the simultaneous transfer of the phenolic proton to the bases, D1-His190 and D2-His189, respectively, as originally suggested by Debus et al. [90]. However, subsequent FTIR studies have suggested that a proton carrier other than D2-His189 [99] could play a role in the redox properties of TyrD and that water could accept the proton from TyrD [100]. Exchangeable protons near TyrD-O' have also been detected by ENDOR and ESEEM studies (e.g. [101,102]). The TyrD-O' EPR signal was lost and/or significantly modified, and PSII photochemistry perturbed, when D2-Arg180 was mutated and this led Manna et al. [103] to propose that D2-Arg180 could accept or stabilize a proton from TyrD.

A recently resolved crystal structure has demonstrated the presence of a cluster of water molecules near TyrZ, but no corresponding cluster near TyrD [1], just a single water molecule. Curiously, this molecule is seen to occupy two different positions, proximal (H₂O_prox) and distal to the TyrD (H₂O_dist), separated by 1.8 Å, with B-factors of 20.1 and 19.3, respectively (figure 9). The proximal position is at H-bonding distance with the phenolic O atom of TyrD (O_TyrD–O_H₂O_prox = 2.73 Å), whereas the distal position is beyond it (O_TyrD–O_H₂O_dist = 4.30 Å) and is instead at H-bonding distance with the guanidinium N atom of D2-Arg180 (O_H₂O_dist–N_D2-Arg180 = 3.01 Å).

The H-bond geometry of the water in the distal position (H₂O_dist) was obtained from QM/MM calculations, with TyrD taken as a deprotonated, neutral radical (TyrD-O') [104]. In the presence of TyrD-O', the water molecule would not remain in the H-bonding, proximal position (H₂O_prox), instead it would move to the distal position, even if it initially donated an H-bond to the phenolic O atom of TyrD-O'. Thus, H₂O_dist and H₂O_prox correspond to deprotonated TyrD-O' radical and protonated TyrD-OH states, respectively [104] (figure 13).

Another point of interest is where the proton from TyrD-OH goes when it is deprotonated to TyrD-O'. Examination of the crystal structure [1] shows that an H-bond network is present beyond D2-Arg180, extending out to D2-His61 near the luminal bulk surface via a series of water molecules [104] (figure 14). Indeed, previous electrostatic calculations have indicated that the protonated states of D2-Arg180 and D2-His61 were likely to be linked [105]. Here, QM/MM calculations based on a more recent crystal structure [1] show that the proton released from TyrD is transferred via the mobile water and D2-Arg180, all the way to D2-His61, through a concerted single-step proton transfer process [104] (figure 14). The proton does not return to the TyrD/D2-His61 moiety but goes through D2-Arg180 in an energetically favourable process irrespective of the presence of positively charged D2-Arg180. This demonstrates that there is no energy barrier for the proton transfer at D2-Arg180. As soon as the proton approaches the −NH₂ group of D2-Arg180, the NH-bond stretches towards the next water molecule, W480. Synchronizing the bond stretch, an OH-bond of W480 stretches towards W373. Similar bond stretching occurs at W373 and W783, and the proton is finally stabilized at D2-His61. Although the H-bond network terminates at W354 in the 1.9 Å crystal structure [1], the proton relay may continue further, releasing the proton into bulk water via W354. Overall, the calculations show that the proton is transferred to D2-His61 along a proton transfer pathway that involves several OH and NH-bond stretches towards acceptor moieties, without explicitly forming H₂O⁺ [104].

7.1. Energetics of the proton transfer pathway proceeding from TyrD

A concerted single-step proton transfer occurring over approximately 13 Å between TyrD and D2-His61 (figure 14) requires both a well-arranged H-bond network with appropriate distances between all donor–acceptor pairs (figures 5...
and 6), and a sufficient driving force. For a proton moving along the pathway, the energy profile indicates that the reaction is sufficiently downhill from the TyrD-associated water to D2-His61, even when the D2-Arg180 moiety is included [104]. The driving force for the proton transfer towards the bulk surface appears to disfavour protons returning to TyrD-O', thus stabilizing the radical.

As far as we are aware, involvement of D2-His61 in the proton transfer pathway from TyrD has not been reported. The electrostatic link between D2-Arg180 and D2-His61,
suggested from electrostatic calculations, is likely to be functionally relevant [105]. Remarkably, the H-bond donor–acceptor distances for W783 near D1-His61 are very short in the 1.9 Å crystal structure [1], namely OW783 – OW354 = 2.51 Å and OW783 – ND2-His61 = 2.58 Å (figure 14). In the QM/MM calculations, these distances were found to be 2.55 and 2.53 Å in the presence of protonated D2-His61 (i.e. after proton transfer), distances that are close to the original geometry of the crystal structure, whereas longer values (2.69 and 2.71 Å) were obtained (2.69 and 2.71 Å) in the presence of deprotonated D2-His61 (i.e. before proton transfer) [104]. Because a standard (asymmetric double-well) H-bond possesses O–O distances of approximately 2.8 Å [36,106], the very short H-bond distances between W783 and His61 may be an indication of a proton being present on D2-His61, or possibly shared with W783, which would thus be functioning as part of the proton transfer pathway from TyrD.

8. Concluding remarks

For a proton to be transferred, alternation of the pK_a values of the two moieties is expected to occur, otherwise, it would remain localized on the donor moiety. In order for this condition to be achieved, proteins either change the H-bond pattern, or change (equalize) the pK_a values of the proton donor and acceptor moieties (table 3). Changes in the H-bond pattern can be induced by photons, as in the example of the trans–cis photoisomerization of the double bond moiety in PYP [10], ultimately leading to equalized pK_a values of the donor and acceptor moieties and efficient proton transfer. Equalizing the pK_a values can also be achieved directly by oxidizing or reducing one of the H-bond moieties, as a result of an electron transfer.

By equalizing the pK_a values, the H-bond donor and acceptor moieties can maximize proton transfer coupling, thus shortening the H-bond donor–acceptor distance. However, if the pK_a matching condition is satisfied only transiently (e.g. the pRCW state in PYP or the QbH_2 state in PSII), in particular near the protein bulk surface, the H-bond is unstable, leading to breakage and concomitant protein conformational changes (table 3).

It is also notable that the matching pK_a condition required for single-well H-bond formation is opposite to that required for salt-bridge formation, which plays a key role in protein–protein interactions. From these points of view, it is clear that symmetric, short H-bonds are not necessarily strong, in particular, when the matching pK_a condition is satisfied by strongly shifting the pK_a values of the donor and acceptor moieties in protein environments, owing to its anti-salt-bridge character.

Acknowledgement. We thank A. William Rutherford, Jian-Ren Shen, Hideki Kandori and Toyokazu Ishida for useful discussion.

Funding statement. This research was supported by the JST PRESTO programme (K.S.), Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEJST) of Japan (22740276 to K.S. and 25107517 to H.I.) and Takeda Science Foundation (H.I.).

Table 3. Summary of the properties of short H-bonds in the crystal structures.

<table>
<thead>
<tr>
<th>H-bond</th>
<th>Tyr-OH...N-His</th>
<th>His-NH...-O-Qb- OH</th>
<th>Glu-COOH...-O-pCA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>protein PSII</td>
<td>PSII</td>
<td>PYP</td>
</tr>
<tr>
<td>state</td>
<td>n.d.</td>
<td>QbH+/QbH_2</td>
<td>pRCW</td>
</tr>
<tr>
<td>donor</td>
<td>D1-Tyr161-OH</td>
<td>D2-His214-NH</td>
<td>Glu46-OH</td>
</tr>
<tr>
<td>acceptor</td>
<td>D1-His190-N</td>
<td>O-Qb- OH</td>
<td>O-pCA</td>
</tr>
<tr>
<td>distance (X-ray) (Å)</td>
<td>2.46^a</td>
<td>2.47^b</td>
<td>2.47^c</td>
</tr>
<tr>
<td>distance (QM/MM) (Å)</td>
<td>2.47</td>
<td>2.47</td>
<td>2.49</td>
</tr>
<tr>
<td>short H-bond formation</td>
<td>trigger</td>
<td>n.d.</td>
<td>electron</td>
</tr>
<tr>
<td>mechanism</td>
<td>n.d.</td>
<td>QbH_2 formation</td>
<td>photoinduced trans–cis isomerization of pCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ increase in pK_a(Oprox)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ removal of an H-bond from Tyr42</td>
</tr>
<tr>
<td>pK_a (bulk solvent)</td>
<td>approximately 9</td>
<td>approximately 14–approximately 5^d</td>
<td>approximately 4–approximately 9</td>
</tr>
<tr>
<td>stability (protein)</td>
<td>stable</td>
<td>transient</td>
<td>transient</td>
</tr>
<tr>
<td>associated conformational change</td>
<td>(no significant)</td>
<td>proton transfer</td>
<td>proton transfer</td>
</tr>
<tr>
<td>location</td>
<td>inner core</td>
<td>near the bulk surface</td>
<td>near the bulk surface</td>
</tr>
</tbody>
</table>

^a pK_a(Glu46) > pK_a(pCA) in the PYP protein environment (in the initial pG state).
^b See [1].
^c See [58].
^d As pK_a(QbH_2) [79,80].

