Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes

Mithun K. Mitra, Paul R. Taylor, Chris J. Hutchison, T. C. B. McLeish and Buddhapriya Chakrabarti

1Department of Physics, I.I.T. Bombay, Mumbai 400076, India
2Systems Biology Doctoral Training Centre, University of Oxford, Oxford OX1 3QX, UK
3School of Biological and Biomedical Sciences, Department of Physics and Astronomy, and 4Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
5The Isaac Newton Institute of Mathematical Sciences, University of Cambridge, Cambridge CB3 0EH, UK

The epigenetic pathway of a cell as it differentiates from a stem cell state to a mature lineage-committed one has been historically understood in terms of Waddington's landscape, consisting of hills and valleys. The smooth top and valley-strewn bottom of the hill represent their undifferentiated and differentiated states, respectively. Although mathematical ideas rooted in non-linear dynamics and bifurcation theory have been used to quantify this picture, the importance of time delays arising from multistep chemical reactions or cellular shape transformations have been ignored so far. We argue that this feature is crucial in understanding cell differentiation and explore the role of time delay in a model of a single-gene regulatory circuit. We show that the interplay of time-dependent drive and delay introduces a new regime where the system shows sustained oscillations between the two admissible steady states. We interpret these results in the light of recent perplexing experiments on inducing the pluripotent state in mouse somatic cells. We also comment on how such an oscillatory state can provide a framework for understanding more general feedback circuits in cell development.

1. Introduction

The ‘biological impossibility’ of reprogramming adult somatic cells to the pluripotent state had been accepted as a dogma for a long time in biology [1]. This view was radically changed by the work of John B. Gurdon in 1962, who showed that a nucleus from a fully differentiated frog intestinal epithelial cell could generate a functioning tadpole upon transplantation into an enucleated egg [2,3]. In another seminal work, Shinya Yamanaka and co-workers demonstrated for the first time in 2006, that four transcription factors (Sox4, Oct2, Klf-4 and c-Myc) were capable of reprogramming an adult mouse fibroblast cell to pluripotency [4]. These induced pluripotent stem cells (iPSCs) were fully germline-competent and were used to clone fully functioning adult mice [5–7]. The discovery of germline-competent iPSCs has opened up a new avenue for understanding the process of cellular differentiation besides offering a new source for developing stem cells for tissue regeneration and other biomedical applications, without the ethical concerns of harvesting embryonic stem cells. Transcription factor-based somatic cell reprogramming has since been shown to be a robust process, and human pluripotent cells have also been developed from somatic cells using a combination of transcription factors, using the SOKM protocol [5] as well as using other TFs such as NANOG and Lin28 in place of Klf-4 and c-Myc [8,9]. While induced pluripotency has been characterized for a number of different cell lines, understanding the key gene regulatory networks and molecular mechanisms that underlie the process remains a key outstanding challenge [10–12].

© 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Cell development and differentiation has been interpreted in the light of Waddington's epigenetic landscape [13], visualized as a set of marbles rolling down a hill with the position of the marble indicative of the state of cellular development. Thus, undifferentiated cells all start at the same state at the top of the hill and end up in different valleys corresponding to their differentiated states at the bottom of the hill depending on the surface topography. These differentiated cell states are separated by barriers which prohibit their spontaneous transformation from one state to another. Though visually compelling and despite past attempts a quantification of Waddington's landscape has been attempted only recently [14–17].

Cell developmental circuits have been modelled as self-regulatory networks, where a transcription factor promotes its own production [14–17] as well as inhibits the production of other TFs (in multi-variable models) [14]. Such TF-regulated gene networks are known to accurately represent cell fate decision pathways in biological models. A two variable self-activating and mutually inhibiting gene network has been found in various tissues, where a multipotent cell undergoes a binary decision process [14,18,19]. One known instance is when the common myeloid progenitor differentiates into either the myeloid or the erythroid fate, depending on the expression levels of the PU.1 and the GATA1 transcription factors [14,19,20]. Such models have been useful in providing a quantitative description of developmental landscapes that correspond to the spirit of Waddington's landscape, with different basins of attraction representing the valleys of the differentiated states.

An important aspect of the reprogramming process is identifying the pathways through which a fully differentiated somatic cell is programmed back to pluripotency, and in particular, whether the path a cell takes in going from a somatic state to a pluripotent state is the same as the reverse pathway. Also of interest is characterizing the possible intermediate states in the process. Recent experiments by Nagy & Nagy [10] have shed some light on the path the cell takes as it is reprogrammed back to a pluripotent state. They studied the reprogramming of differentiated secondary mouse fibroblast cells that were derived from iPSCs and encoded the four Yamanaka factors under the control of doxycycline promoters. Thus, expression of the four factors and induction of pluripotency in entire populations of the fibroblasts could be achieved by treating cultures with the drug doxycycline. They found that there were two distinct timescales in the reprogramming process, a point of no-return (PNR) time and a commitment to pluripotent state (CPS) time. The conversion of the cell from the somatic state to the pluripotent state is a slow process, and it takes about 21 days for the somatic cell to reach pluripotency under the effect of the doxycycline input. There are numerous changes associated with the return to a pluripotent state, and the external drive (doxycycline) input needs to be provided for a time of about 14 days for the endogenous factors to become active and drive the cell to pluripotency in the absence of the doxycycline input. This time is called the CPS timescale. Similarly, the PNR timescale, at about 7 days, indicates the time below which the cell returns to the somatic state if the external doxycycline input is removed. The biological changes associated with the two timescales are not clearly understood and require further experiments to clarify. In between these two timescales, the PNR and the CPS, they found that the cell reached an undetermined state, which was neither somatic nor pluripotent, but rather signals the presence of a novel intermediate state in the reprogramming process. Cessation of the doxycycline input during this period results in neither return to somatic nor progress to pluripotent states. They denoted this novel intermediate state as the ‘Area 51’ state. However, the characteristics of this state have not yet been determined.

The presence of an intermediate state in the reprogramming pathway promises to be a useful tool in understanding the mechanics of the uphill process. Furthermore, a full understanding of the Area 51 state could lead to enhanced control over the reprogramming process, such as offering the possibility to create and maintain lineage-committed cells that have various applications. In this paper, we propose a theoretical framework that can lead to such intermediate states in the context of a gene regulatory network. Our work focuses on deterministic approaches to modelling the gene regulatory network, in which the system attains a steady state depending on the choice of parameters, and stays in the steady state once it is reached. In biological systems, the cell may switch between different steady states, and this can be modelled by introducing stochastic dynamics into the model, in which fluctuations may lead to transitions between attractors [21]. While this deterministic differential equation approach is an abstraction of an inherently discrete and stochastic process, it has been shown to be a powerful tool on analysing gene regulatory networks and has yielded experimentally verifiable predictions for a large number of systems. Since the epigenetic reprogramming process is characterized by an overexpression of the associated transcription factors (Sox, Oct-4, Klf4, and c-Myc), which drives a somatic cell deterministically to the induced pluripotent cell fate, it is expected that a deterministic approach provides a reasonable modelling paradigm for the epigenetic landscape. In this paper, we focus on the deterministic gene networks, and the study of the effect of stochastic fluctuations is left for future work. A comparative analysis of deterministic and stochastic approaches to modelling gene regulatory networks can be found in [22,23].

The reprogramming of a somatic cell to pluripotency is a complex multistep reaction that involves both structural modifications to the chromatin network as well as changes in gene expression patterns [24,25]. These changes arise in response to the expression levels in the gene regulatory network and are modelled by a self-regulating feedback loop. However, since these changes occur in a finite time, the feedback loop should in fact depend on the state of the system at a previous instant of time, leading to delays. Delay differential equations have been used to study diverse systems [26], such as modelling disease onset in physiological systems [27] and discrete time population models [28]. Biochemical circuits involving feedback and delay have also been studied and the general criterion for oscillations to exist in such systems, i.e. existence of a (i) delayed negative feedback, (ii) nonlinearity in the chemical kinetics, and (iii) a proper balancing of timescales for forward and backward reactions, identified [29]. These studies (see [29] and references therein) focused on delayed negative feedback with nonlinear chemical kinetics in the degradation term that renders the steady-state 'unstable' leading to oscillations for a choice of model parameters. In this work, we show that a time-dependent chemical drive and a delayed positive feedback with no delay on the degradation term of a chemical reaction leads
to oscillations for certain choices of delay parameters. We show that this interplay between a time-dependent drive and a delayed positive feedback is critical in developing a mathematical framework for understanding the nature of the epigenetic landscape.

In this paper, we model the epigenetic landscape through the dynamics of a single differentiation regulator, denoted by x, that promotes its own synthesis through a feedback loop. While real-life regulatory circuits in the cell depend on two or more differentiation regulators, the main aim of this paper is to show the effects of time delays in such circuits, and a single-variable genetic circuit offers a model system in which to study such effects. Such single-variable circuits are similar to the models proposed for progesterone-induced *Xenopus* oocyte maturation [15–17,30,31] and might also be applicable to scenarios where a single transcription factor such as MyoD has been shown to induce a change of cell fate from fibroblast to myoblast [32]. We define the single-variable regulatory model in the next section and discuss the results as a function of the parameters of the model. A discussion of the importance and applicability of the resulting phase diagram to systems of differentiating cells and its extension to more realistic gene regulatory networks are discussed in §3.

2. Model and results

Gene regulatory networks that control cell fate differentiation have been modelled by self-activating genes. While actual gene regulatory networks inside the cell may consist of multiple genes which have a complex interdependence on each other, one or two-variable gene networks provide a useful model to illustrate some of the basic principles of cell fate determination.

We first introduce a single-variable model for cell differentiation, where a single regulator x self-regulates its own synthesis, as proposed by Ferrell [15–17]. The equations governing the rate of change of expression of a single gene is given by

$$\frac{dx}{dt} = a_0 + a_1 \frac{x^n}{x^n + x^2} - \beta x,$$ \hspace{1cm} (2.1)

where the first term represents an external input a_0 that is constantly applied. The second term represents a feedback-dependent self-regulation, modelled by a Hill function of order n. The third term models degradation process through a mass action process with the degradation rate β. The right-hand side of equation (2.1) can be integrated with respect to the variable x to give an ‘effective potential’ landscape having two stable minima corresponding to different levels of expression of the gene. This can be seen in figure 1a. The two stable fixed points correspond to $x = \tilde{x}_1$ and $x = \tilde{x}_2$, respectively ($\tilde{x}_1 = 0$ and $\tilde{x}_2 \approx 2$ for $a_0 = 0$) with an unstable extremum at $x = x^*$ ($x^* = 1$, for $a_0 = 0$). In the absence of drive, the final gene expression level is crucially dependent on its initial value $x(t = 0)$. Therefore, if $x(t = 0) = \xi$, the system approaches $x = \tilde{x}_1$, while if $x(t = 0) = 1 - e$, the fixed point $x = \tilde{x}_2$ is chosen. Furthermore, in this model beyond a critical value of the external input ($a_0 > a_0$), the minimum at $x = \tilde{x}_1$ becomes unstable and the long-time steady state is always $x = \tilde{x}_2$. This is in line with Ferrell’s idea that saddle-node bifurcations are inconsistent with Waddington’s landscape picture as there are no alternative endpoint states. In his work, Ferrell [15–17] further introduces a two variable gene regulatory circuit as a model mimicking lateral inhibition and demonstrates pitchfork bifurcation commensurate with Waddington’s picture. A similar two variable model had been proposed around the same time by Wang et al. [14].

Motivated by these gene regulatory network models that attempt at developing a quantitative picture of Waddington’s landscape, we propose a simple generic single-gene regulatory network model similar to Ferrell [15–17] incorporating time-dependent drive and delay. The rate of change of the gene regulator x in this model is described by

$$\frac{dx}{dt} = a_0 \Theta[d - t] + a_1 \frac{x^n(t - \tau)}{x^n(t - \tau) + x^2(t - \tau)} - \beta x(t),$$ \hspace{1cm} (2.2)

where a_0, a_1 and β have the same meanings as equation (2.1). However, unlike that model both the chemical drive as well as the feedback is functions of time. The Heaviside function multiplying the a_0 term represents the fact that the external input is applied for a finite time-interval d, while the self-regulatory term is dependent on the state of the regulator x at a previous instant of time $t - \tau$. The time delay in the self-regulation term in equation (2.2) can have several possible physical origins, including multi-step chemical reactions and cell shape changes. We have assumed no such delay in the degradation term, as it does not have biochemical warrant at the same level as the self-regulation and it does not affect the general results in our model.

We numerically integrated equation (2.2) for different values of the delay time τ and drive d. Figure 1b represents the results of the single-gene regulatory circuit without delay and with a chemical drive acting for a finite interval d on an initial state $x = 0$. The self-promotion rate coefficient is $a_1 = 1$ and the decay constant $\beta = 0.5$. Unlike otherwise specified the exponent in the self-regulatory term is chosen to be $n = 5$. Further, the amplitude of the chemical drive is parametrized by a_0. We find that for a value of $a_0 < a_0$ and the duration of the drive d less than a critical value $d_c(\approx 2)$, the long-time steady state is $x = 0$. If however the drive is applied for a duration longer than d_c, starting from a state $x(t = 0) = 0$ the system transitions to the other minimum $x \approx 2$. Identifying the $x = 0$ state as a somatic and $x \approx 2$ as the pluripotent state, the above process describes inducing pluripotency via a chemical drive.

Figure 1c shows the variation of $x(t)$ versus t starting from the somatic state $x = 0$ for $d = 10$ and $d = 1000$, and a time delay $\tau = 500$ for the same set of parameters a_0, a_1 and β. As seen in the figure for $d = 10$, the system relaxes back to the $x = 0$ steady state, while for $d = 1000$ the pluripotent state $x \approx 2$ is chosen. Sharp spikes showing attempted transitions between the two states are also seen. In the intermediate regime when the drive d is of the same order of magnitude as the delay τ, the trajectory of $x(t)$ shows sustained oscillations (this is shown in figure 1d). We interpret such sustained oscillations as the cells which are caught in a limbo between the pluripotent and the somatic states and conjecture that these states are possibly the ones seen in the experiments by Nagy & Nagy [10] termed ‘Area 51’. The chemical drive a_0 is then interpreted as the doxycycline input to somatic cells having a non-zero value, corresponding to a finite rate of basal synthesis, which is switched off ($a_0 = 0$) beyond the input time.
Figure 1. Cell differentiation in single-gene regulatory network with delay. Somatic ($x = 0$), induced pluripotent ($x \approx 2$), and Area 51 cells in a single-gene regulatory circuit. (a) Steady-state values for equation (2.2) without drive or delay ($\alpha_0 = 0$, $d = 0$). Depending on the initial value $x(t = 0)$, the somatic (solid line (red)) and the iPSC cells (dash-dotted line (blue)) are stable. The unstable state $x = 1$ (dashed line (green)) is also shown. If the initial state $x(t = 0)$ has a value infinitesimally above the unstable state $x = 1$, the system transitions to the pluripotent state ($+$ points), while if $x(t = 0)$ has an infinitesimally smaller value than $x = 1$ the system transitions to the somatic state (\times points). (b) Corresponding steady states with a non-zero drive ($\alpha_0 = 0.5$), a decay constant $\beta = 0.5$, and the coefficient of self-promotion $\alpha_1 = 1.0$. Depending on the duration $d = 2$ (solid line (red)) the somatic, or $d = 3$ (dash-dotted line (blue)) iPSC cells are chosen. (c) Shows $x(t)$ versus t corresponding to equation (2.2) for a delay of $\tau = 500$ and for drive $d = 10$ (solid line (red)), and $d = 1000$ (dashed line (blue)) indicating stability of somatic and iPSC states. (d) Shows $x(t)$ versus t for $d = 500$ with sustained fluctuations between the iPSC and somatic states. (Online version in colour.)

The oscillations seen in some solutions of equation (2.2) are an inherent feature of delay differential equations [26]. Sustained oscillations are present for other choices of the model parameters, α_0, α_1, and the order of the Hill functions n that characterize the chemical kinetics of gene regulatory circuit. This is shown in figure 2 in which we illustrate the presence of the oscillatory state for different choices of the various parameters. These model parameters encapsulate the underlying biological mechanisms which accompany epigenetic changes. These parameters are thus to be used as inputs from experiments, or detailed molecular-level simulations. As is apparent from the different panels of figure 2, the relative time spent in the somatic and pluripotent state in the oscillatory regime is determined by the precise value of the driving time, and the inherent time delay of the gene network. The sustained oscillations are expected to be biologically relevant when the relative time spent in the two states is of the same magnitude, and this regime is obtained when the drive time d is less than the delay time τ ($d \approx 300$ for $\tau = 500$, for our choice of parameters), which is a reasonable assumption for a real biological system. The theoretical model maps the full phase diagram, and real-life experiments can then help identify which region of the phase space is occupied by a biological system.

The oscillations as shown in figure 1d are investigated in greater detail in figure 3 for $d = \tau = 500$, and $\alpha_0 = 0.5$, $\alpha_1 = 1$ and $n = 5$. It is possible to analyse the time of occurrence of these sharp spikes. If the drive duration is smaller than the delay time, i.e. $d < \tau$, x initially increases from its zero value as a function of time. Once the drive is withdrawn the dynamics of the system is completely dominated by the degradation term and as a result x decreases. This behaviour continues till $t = \tau$ when the self-regulation term promoting gene activity becomes non-zero, and as a result x increases monotonically till a time $d + \tau$. At this time, the self-regulatory term picks up the values of x from the earlier cycle which was dominated by degradation kinetics. This can be generalized to state that the downward spikes occur at $t_p = d + \tau p$, while the upturns occur at $t = q\tau$. The slope of the first downturn is completely dictated by β while the upward slope turns out to be a nonlinear function of α_1 and β. For the situation in which $d > \tau$ the first upward turn occurs at $t = \tau$ followed by a downturn upon reduction of
Figure 2. ‘Area 51’ oscillations as a function of parameters. The presence of the oscillatory state for different values of the parameters α_0, α_1, that characterize the single-gene expression kinetics, the driving time d, delay time τ and the order of the Hill function n. (a) Presence of ‘Area 51’ states for parameter values $n = 5$, $\tau = 500$, $d = 300$, $\alpha_0 = 0.5$ and $\alpha_1 = 2.0$. Changing the parameters $\alpha_0 = 0.6$ and $\alpha_1 = 1.0$, while keeping n, τ and d unchanged also shows oscillations as in (b). For a choice of parameters $\alpha_0 = 0.5$, $\alpha_1 = 1.0$, and $n = 6$ while keeping parameters τ and d same as (a) shows oscillations with accessible short lived intermediate states that lie between pluripotent and somatic fixed points. This is shown in (c). In (d) by changing the driving time to a lower value $d = 100$ and $n = 5$ while holding all other parameters same as in (c) the duration of time spent in the somatic state can be increased. (Online version in colour.)

Figure 3. Variation of two thresholds d_{PNR} and d_{CPS} with delay τ for fixed driving time $t = 500$. (a) With $n = 5$ and $d = 300$ the system transitions from the somatic state to the induced pluripotent state once the duration of the drive is greater than d_{PNR}. However for larger values of τ, the two threshold values are different exposing an intermediate regime marked by sustained oscillations. The presence of ‘Area 51’ states for parameter values $n = 5$, $\tau = 500$, $d = 300$, $\alpha_0 = 0.6$ and $\alpha_1 = 1.0$. However for larger values of τ, the two threshold values are different exposing an intermediate regime marked by sustained oscillations. As seen from the graph, d_{CPS} monotonically increases with delay τ while some fluctuations in d_{PNR} are observed. With increasing τ, the ‘Area 51’ region widens as can be seen in figure 4. Phase plots revealing the single-gene expression level for the regulatory circuit is shown in figure 5 in which $x(t)$ is plotted against $x(t + \tau)$. $

3. Discussion

We have illustrated the importance of time delays in feedback circuits in the context of a simple gene regulatory network, in which the state of differentiation is regulated by a single differential regulator. The energy landscape of the model, in the absence of delays, has two minima, denoting the pluripotent and differentiated states. Introducing a delayed self-regulation term changes the landscape such that there is now a region in phase space, in which the system shows sustained oscillations (figures 2 and 3a) and the steady state corresponds to a limit
We propose that such oscillatory states may underlie the existence of novel intermediate states observed in the reprogramming of mouse somatic cells, and denoted by 'Area 51'. We hope that our prediction of a long-lived intermediate oscillatory state will motivate future experiments on studying the reprogramming pathways of the cellular differentiation process. Experiments with fast decaying reporters which are proxies for pluripotency or somatic cell markers may provide one avenue for exploring the predicted oscillatory state. If the oscillatory state is experimentally validated, this would then help identify which markers of pluripotency are responsible for the oscillations. This will give a better understanding of the delay timescale, and help identify the regime of parameter space which is appropriate for analysing a real biological system.

In order to model more realistic differentiation events, one would need to study higher dimensional systems, where the number of differential regulators is more than one. Two variable gene regulatory models [14] offer a straightforward generalization of these ideas to mimic realistic cell differentiation scenarios. For a full description of the dynamics of the reprogrammed cell due to the four Yamanaka factors, one needs to study the effect of delays in a four variable model, and map out the effect of the interplay of these four variables on the intermediate state.

Figure 3. Intermediate states in cellular reprogramming. Fluctuations in the 'Area 51' region as a combined result of time-dependent drive \(d \) and delay \(\tau \) for \(d = \tau = 500 \). (a) Sustained oscillations for the parameters of figure 1d. (b,c) Indicate the oscillations in the transient (500 \(\leq t \leq 540 \)) and sustained oscillatory (7500 \(\leq t \leq 7650 \)) regions. (Online version in colour.)

6. Maherali N et al. 2007 Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 1, 55 – 70. (doi:10.1016/j.stem.2007.05.014)

References

6. Maherali N et al. 2007 Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 1, 55 – 70. (doi:10.1016/j.stem.2007.05.014)

20. Graf T, Enver T. 2009 Forcing cells to change
18. Zhou JX, Huang S. 2011 Understanding gene circuits
17. Ferrell Jr JE, Xiong W. 2001 Bistability in cell
16. Ferrell Jr JE, Pomerening JR, Kim SY, Trunnell NB,
15. Ferrell Jr JE. 2012 Bistability, bifurcations,
The strategy of genes
Nature
1016/j.ydbio.2007.02.036)
(doi:10.1016/
11. Stadtfeld M, Hochedlinger K. 2010 Induced
progenitor cells.
10.1016/j.tig.2010.11.002)
reprogramming.
at cell-fate branch points for rational cell
22. Mackey MC, Glass L. 1977 Oscillations and chaos in
physiological control systems. Science 197,
21. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-
Buylla ER. In press. Epigenetic landscape models: the
20.1011/004192)
19. Shmulevich I, Aitchison JD. 2009 Deterministic and
stochastic models of gene regulatory networks.
50076-6879(09)67013-0)
23. Jenkins DJ, Stekel DJ. 2010 Stochasticity versus
determinism: consequences for realistic gene
regulatory network modelling and evolution. J. Mol.
24. Kelly TK, De Carvalho DD, Jones PA. 2010 Epigenetic
28, 1069 – 1078. (doi:10.1038/nbt.1678)
25. De Carvalho DD, You JS, Jones PA. 2010 DNA
methylation and cellular reprogramming. Trends Cell
Biol. 20, 609 – 617. (doi:10.1016/j.tcb.2010.08.003)
26. Mackey MC, Glass L. 1977 Oscillations and chaos in
physiological control systems. Science 197,
287 – 289. (doi:10.1126/science.267326)
27. Alexander ME, Moghadas SM, Rost G, Wu J. 2008 A
delay differential model for pandemic influenza with
with applications in population dynamics. New York,
29. Novak B, Tyson JJ. 2008 Design principles of
biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9,
981 – 991. (doi:10.1038/nrm2530)
30. Xiong W, Ferrell Jr JE. 2003 A positive-feedback-
based bistable ‘memory module’ that governs a cell
nature02089)
basis of an all-or-none cell fate switch in Xenopus
sience.280.5365.895)
32. Davis RL, Weinstauber H, Lassar AB. 1987 Expression
of a single transfected cDNA converts fibroblasts to
myoblasts. Cell 51, 987 – 1000. (doi:10.1016/0092-
8674(87)00585-X)
33. Brambilla T, Foreman R, Welstead GG, Lengner CJ,
Wernig M, Suh H, Jaenisch R. 2008 Sequential
expression of pluripotency markers during direct
reprogramming of mouse somatic cells. Cell Stem
Cell 2, 151 – 159. (doi:10.1016/j.stem.2008.01.004)
34. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K.
2008 Defining molecular cornerstones during
fibroblast to iPS cell reprogramming in mouse.
2008.02.001)
35. Foster CR, Robson JL, Simon WI, Twigg J, Cruikshank D,
Wilson RG, Hutchison CJ. 2011 The role of Lamin A in
cytoskeleton organization in colorectal cancer cells: a
4161/nud.2.5.17775)
36. Consacci-Sorell ME, Simcha I, Ben-Yedidia T,
Savagner P, Ben-Zeev A. 2003 Autoregulation of E-
cadherin expression by cadherin – cadherin
interactions: the roles of betacatenin signaling, Slug,
1083/jcb.200308162)
37. Chen D et al. 2003 SKI activates Wnt/-catenin signaling
38. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP,
Nevo J, Gjerdrum C, Tiron C, Lorens JB, Ivaska J.
2010 Vimentin regulates EMT induction by Slug and
oncogenic H-Ras and migration by governing Axl
expression in breast cancer. Oncogene 30,
1436 – 1438. (doi:10.1038/onc.2010.509)