Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue

Davide Carnelli1,3,†, Pasquale Vena2,4, Ming Dao3, Christine Ortiz3 and Roberto Contro1

1Department of Structural Engineering, and 2Department of Chemistry, Material and Chemical Engineering, LaBS-Laboratory of Biological Structure Mechanics, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milan, Italy
3Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
4IRCCS, Istituto Ortopedico Galeazzi, P.zza R. Galeazzi 4, 20161 Milano, Italy

Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Tests were performed on the same osteonal structure in the axial (along the long bone axis) and transverse (normal to the long bone axis) directions along arrays going radially out from the Haversian canal at four different maximum depths on three secondary osteons. Results clearly show a periodic pattern of stiffness with spatial distance across the osteon. The effect of length scale on lamellar bone anisotropy and the critical length at which homogenization of the mechanical properties occurs were determined. Further, a laminate-composite-based analytical model was applied to the stiffness trends obtained at the highest spatial resolution to evaluate the elastic constants for a sub-layer of mineralized collagen fibrils within an osteonal lamella on the basis of the spatial arrangement of the fibrils. The hierarchical arrangement of lamellar bone is found to be a major determinant for modulation of mechanical properties and anisotropic mechanical behaviour of the tissue.

1. Introduction

Cortical bone is a heterogeneous, hierarchical composite material with important structural features spanning multiple length scales, each of which contributes to macroscopic biomechanical function [1–5]. At the microstructural level, both in humans and in many other large vertebrates, a particularly critical determinant of the mechanical properties of the whole tissue are concentric lamellar cylindrical structures called secondary osteons (figure 1a–c) [6,7].

The detailed lamellar structure within individual secondary osteons was interrogated via synchrotron X-ray texture measurements and consists of three-dimensional helicoids of mineralized collagen fibrils [6]. Transmission electron microscopy [7–10] revealed that the mineralized collagen fibrils that make up one sub-layer of the lamellar unit have an internal crystalline structure. Within each lamella, which typically has a approximately 3–7 μm thickness, the long axis of the collagen fibrils rotates from a direction roughly parallel to the osteonal axis at one lamellar boundary (referred to as ‘thick’ sub-layers or sub-lamellae, approx. 2–4 μm thick) to a direction approximately perpendicular to it at the opposite lamellar boundary (referred to as ‘thin’ sub-layers or sub-lamellae, approx. 1–2 μm thick.

†Present Address: Complex Materials, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland.
The mechanical characterization of individual osteons was performed in tension, compression and torsion [11–13], as well as with ultrasound [14]. Instrumented indentation was also applied to evaluate the elastic properties of lamellar bone within the osteonal structure along multiple orientations [15–17]. These studies identified anisotropic elasticity of individual osteons, where the axial direction was stiffer than the transverse direction with an anisotropic ratio (axial/transverse) of approximately 1.5, similar to the value found for macroscopic cortical bone [2,3] and lower than the expected value for individual mineralized collagen fibrils (approx. 2.0) [18].

Figure 1. (a) Optical microscopy image of osteonal bovine bone tissue parallel to the osteonal axis (axial direction). (b) Optical microscopy image of osteonal bovine bone tissue normal to the osteonal axis (transverse direction). (c) Scanning electron microscopy image of a region surrounding an individual osteon parallel to the osteonal axis. (d) Home-built sample stage enabling the testing of two orthogonal orientations within the same osteon. (e) Illustration of the indentation test directions (A and T1) with respect to the osteonal microstructure (in red). (Online version in colour.)
Table 1. Nomenclature.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>axial indentation direction w.r.t. the global coordinate system</td>
</tr>
<tr>
<td>A, T_1, T_2</td>
<td>global coordinate system (osteons)</td>
</tr>
<tr>
<td>a_1, a_2</td>
<td>semi-axes lengths of the elliptical projected area of contact</td>
</tr>
<tr>
<td>a_1, a_2, a_3</td>
<td>indentation coordinate system for the Swadener–Pharr model</td>
</tr>
<tr>
<td>B</td>
<td>Barnett–Lothe tensor</td>
</tr>
<tr>
<td>C</td>
<td>stiffness tensor</td>
</tr>
<tr>
<td>C_{ijhk}</td>
<td>stiffness tensor coefficients</td>
</tr>
<tr>
<td>E</td>
<td>uniaxial Young’s modulus</td>
</tr>
<tr>
<td>E_1</td>
<td>uniaxial Young’s modulus along the mineralized collagen fibrils long axis direction</td>
</tr>
<tr>
<td>E_P</td>
<td>uniaxial Young’s modulus perpendicular to the mineralized collagen fibril long axis for a transversely isotropic material model</td>
</tr>
<tr>
<td>E_{P1}, E_{P2}</td>
<td>uniaxial Young’s moduli perpendicular to the mineralized collagen fibril long axis for an orthotropic material model</td>
</tr>
<tr>
<td>G_{QP}</td>
<td>shear modulus for a mineralized collagen fibril in the $L–P$ plane for a transversely isotropic material model</td>
</tr>
<tr>
<td>$G_{QP1}, G_{QP2}, G_{PP2}$</td>
<td>shear moduli for a mineralized collagen fibril in the $L–P$, $L–P$ and $P–P$ planes for an orthotropic material model</td>
</tr>
<tr>
<td>L</td>
<td>longitudinal indentation direction w.r.t. the local coordinate system</td>
</tr>
<tr>
<td>L, P_1, P_2</td>
<td>local coordinate system (mineralized collagen fibrils)</td>
</tr>
<tr>
<td>M</td>
<td>indentation modulus</td>
</tr>
<tr>
<td>M_A</td>
<td>indentation modulus in the axial direction</td>
</tr>
<tr>
<td>M_T</td>
<td>indentation modulus in the transverse direction</td>
</tr>
<tr>
<td>M_0</td>
<td>oscillatory function mean value</td>
</tr>
<tr>
<td>M_{exp}</td>
<td>experimental indentation modulus</td>
</tr>
<tr>
<td>M_{comp}</td>
<td>indentation modulus computed with the Swadener–Pharr method</td>
</tr>
<tr>
<td>P</td>
<td>perpendicular indentation direction w.r.t. the local coordinate system</td>
</tr>
<tr>
<td>T</td>
<td>transverse indentation direction w.r.t. the global coordinate system</td>
</tr>
<tr>
<td>r</td>
<td>radial position across the osteon</td>
</tr>
<tr>
<td>r_i</td>
<td>locations corresponding to the peaks and valleys of the stiffness modulation in the axial and transverse directions</td>
</tr>
<tr>
<td>r, s, t</td>
<td>orthogonal reference system for the Swadener–Pharr model</td>
</tr>
<tr>
<td>w</td>
<td>lamellar width</td>
</tr>
<tr>
<td>γ</td>
<td>angle between the direction t and the a_1 axis</td>
</tr>
<tr>
<td>ΔM</td>
<td>oscillatory function amplitude</td>
</tr>
<tr>
<td>θ</td>
<td>angle between the long axis of the mineralized collagen fibrils and the loading direction</td>
</tr>
<tr>
<td>ν_{1P}, ν_{3P}</td>
<td>Poisson’s ratios for a mineralized collagen fibril in the $L–P$ and perpendicular ($P–P$) planes for a transversely isotropic material model</td>
</tr>
<tr>
<td>ν_{1P1}, ν_{3P1}</td>
<td>Poisson’s ratios for a mineralized collagen fibril in the $L–P$, $L–P$ and $P–P$ planes for an orthotropic material model</td>
</tr>
</tbody>
</table>

Considering the hierarchical structural features of bone [6], different characteristic sizes which may also play functional roles in bone exist at different length scales [19–21]. In a recent study, Yao et al. [21] adopted AFM-based nanoindentation to identify a characteristic length scale of approximately 200 nm within one sub-layer of the lamellar unit; at a higher level, spatially controlled nanoindentation experiments within individual osteons allowed Gupta et al. [19] to identify a larger characteristic length scale owing to the periodicity of the osteonal lamellae, with thicker sub-lamellae of higher stiffness alternating with thinner sub-lamellae of lower stiffness. The spatial variation of indentation modulus within a lamella was attributed to the rotation of the inherently anisotropic collagen fibrils [19,22] and variations in the mineral content [19]. Nevertheless, an experimentally validated analytical model that directly links the nano-scale rotational arrangements of collagen fibrils and the corresponding anisotropic elasticity is still missing.

In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Experiments were carried out in two orthogonal orientations within the same individual osteon. Tests were performed at four different maximum penetration depths to study the effect of indentation area on mechanical modulation. An analytical model that assumes the inherent anisotropy of the mineralized collagen fibrils as well as their orientation was introduced to estimate the elastic constants of a sub-layer of mineralized collagen fibrils.
2. Material and methods

In the following, the Haversian canal axis is referred to as the ‘axial’ direction (A), whereas the plane perpendicular to this axis is referred to as the ‘transverse’ direction (T1, T2). Similarly, the long axis of the mineralized collagen fibrils is herein referred to as the ‘longitudinal’ direction (L), while the plane perpendicular to this axis is referred to as the ‘perpendicular’ direction (P1, P2). Thus, A, T1, T2 represents a global coordinate system based on the whole secondary osteon; whereas, L, P1, P2 represents a local coordinate system related to the mineralized collagen fibrils (table 1).

2.1. Sample preparation and characterization

Samples were kept under conditions close to the physiological one until the tests; to this purpose no alcohol dehydration, freezing, embedding, thermal drying, long-term storage in ambient conditions or chemical fixation were used. Adult lamellar bone obtained from a 30 month old cow was harvested from between the tibial metaphysis and diaphysis. Approximately 5 mm cubic specimens were obtained using a diamond-impregnated annular wafering saw (Isomet 5000, Buehler, Inc., Lake Bluff, IL, USA) running at 400–600 r.p.m. under constant water irrigation. In order to expose the osteons’ Haversian canal, the first two cuts were performed along the transverse directions and the second ones along the axial directions. The samples were then polished using a metallographic polishing wheel and adhesive papers with successively smaller Al2O3 particle grit sizes. Samples were rinsed copiously with de-ionized (DI) water followed by ultrasonication in DI water between polishing intervals. The cutting and polishing procedures were performed the day after harvesting.

From optical (Nikon Eclipse L150, figure 1a,b) and scanning electron microscopy (JEOL SEM 6320FV, figure 1c), the average osteonal diameter was found to be approximately 200 µm and the average thickness of the first four or five individual lamellae around the Haversian canal is 5.01 ± 0.10 µm. Contact mode atomic force microscope (AFM, MFP-3D, Asylum Research, Inc., Santa Barbara, CA, USA) imaging was performed to assess the r.m.s. surface roughness achieved with the polishing procedure, which was quantified as 6.0 ± 0.7 nm on several 2 × 2 µm areas in different locations on the three osteonal structures.

Finally, samples were fixed into the groove of a home-built sample holder that allows for mechanical testing of the same osteonal structure in different directions with respect to the osteonal axis (figure 1d,e).

2.2. Nanoindentation experiments

All instrumented indentation experiments were conducted in the osteonal region of cortical bone shortly after harvesting and over a short enough time period so that no significant modification of the sample state was assured; to this purpose the statistical invariance of experimental data over time (the whole time span of the testing period) was checked (data not shown). The effect of hydration state was neglected at this stage, as the bone samples were tested in ambient conditions (20°C and 50% relative humidity). A Tribonindenter (Hysitron, Inc., Minneapolis, MN, USA) was used with a Berkovich diamond tip. The tip area function and machine compliance were calibrated on a fused silica reference sample by performing 100 indentations between 100 to 10 000 µN maximum forces [23].

Experiments were performed in displacement control along arrays going radially out from the Haversian canal edge to the external region of the osteon at four different maximum depths: 50, 100, 200 and 300 nm. The experimental procedure is detailed in table 2. The displacement rates of the indentation experiments were 20 and 100 nm s⁻¹ in the loading and unloading branches of the indentation curve, respectively. An automatic preliminary thermal drift correction was applied before each indentation. Preliminary investigations were performed to ensure that time-dependent effects were minimal (see [24] for further details). This experimental procedure was used on three secondary osteons in both the axial and transverse directions (A and T1, respectively, in figure 1a–c). A total of approximately 2000 indentations were carried out.

The Oliver–Pharr method [25] was adopted to obtain the indentation modulus M from the unloading portion of each test. An unloading segment range between 95 and 40 per cent of maximum load was chosen for data fitting.

2.3. Empirical formulation for stiffness modulation

The oscillatory function

\[
M(r) = \frac{\Delta M}{2} \sin \left(\frac{2\pi r}{\omega} + c \right) + M_0
\]

was adopted to fit the stiffness modulation along the indentation path. In equation (2.1), \(r \) is the radial position across the osteon, \(r = 0 \) being the Haversian canal inner edge; \(\omega \) is the mean value of the experimentally observed lamellar width (5.01 µm); \(\Delta M \) is the oscillatory function amplitude; \(M_0 \) is its mean value.

2.4. Anisotropic analytical models

The spatial modulation of stiffness at the lowest maximum indentation depth probed (50 nm) was fitted to an analytical model that assumes the inherent anisotropy of the mineralized collagen fibrils and allows for the evaluation of the effective stiffness of the sub-lamellae as a function of collagen fibril orientation. The orientation-dependent uniaxial Young’s modulus \(E \) of an individual sub-lamella was obtained by applying the rotation formula [19,26,27]

\[
E(\theta) = \frac{\cos^4(\theta)}{E_L} + \frac{\sin^4(\theta)}{E_P} + \left(\frac{1}{G_{LP}} - \frac{2v_{LP}}{E_L} \right) \cos^2(\theta) \sin^2(\theta) \right)^{-1},
\]

where \(\theta \) is the angle between the long axis of the mineralized collagen fibrils (longitudinal direction, L) and the loading direction, \(E_L \) is the uniaxial Young’s modulus along the mineralized collagen fibrils long axis direction (longitudinal direction, L), \(E_P \) is the uniaxial Young’s modulus perpendicular to the mineralized collagen fibril axis (perpendicular directions, P1 and P2), \(G_{LP} \) is the shear modulus and \(v_{LP} \) is the Poisson’s ratio. The model assumes that individual collagen fibrils and uniformly oriented planar layers of fibrils are transversely isotropic (\(P_1 = P_2 = P \)) [28–30].

The uniaxial Young’s moduli were directly estimated from the experimental nanoindentation loading–unloading curves by using the analytical model for anisotropic elastic contact introduced by Delafargue & Ulm [31]. This model relates the
indentation moduli of the mineralized collagen fibril sub-lamellae in the longitudinal (L) and perpendicular (P₁, P₂) directions to the material stiffness tensor coefficients for individual collagen fibril layers \((C_{ijkl} = C_{ijkl}(E_L, E_P, G_{ij}, v_{LP}, v_{PP})) \), \(v_{PP} \) being the Poisson’s ratio in the isotropy plane. The model holds for transversely isotropic and orthotropic solids under rigid conical indentation along the three principal material symmetry directions. For a transversely isotropic material model, the indentation modulus \(M \) in the axis of symmetry direction (here named as direction 3, corresponding to the longitudinal collagen fibril axis direction \(L \)) is explicitly related to \(C_{ijkl} \) with the following expression:

\[
M = 2 \left(\frac{C_{1111}C_{3333} - C_{1133}^2}{C_{1111}^2} \right) \left(\frac{1}{C_{1122}^2} + \frac{2}{\sqrt{C_{1111}C_{3333} + C_{1133}^2}} \right)^{-1}.
\] (2.3)

For the indentation directions normal to the axis of symmetry (directions 1 and 2, corresponding to the perpendicular collagen fibril axes direction \(P_1 = P_2 = P_3 \)), the indentation moduli \(M_1, M_2 \) are as follows:

\[
M_1 = M_2 = \sqrt{\frac{C_{1111} - C_{1122}}{C_{1111}^2}} \left(\frac{C_{1111}}{C_{3333}} \right)^{1/2} M_3.
\] (2.4)

The above formulae were applied at those indentation locations for which indentation direction is assumed to be aligned with a principal material direction (i.e. in the case of indentation of thick and thin sub-lamellae). Using the indentation moduli \(M_1, M_2, M_3 \) calculated from nanoindentation data via the Oliver–Pharr method, equations (2.3) and (2.4) were solved for \(E_L \) and \(E_P \). The Poisson’s ratios \(v_{LP}, v_{PP} \) were assumed according to literature data ([18], see equation (3.1)) and the shear modulus \(G_{LP} \) was related to the remaining parameters (see equation (3.1)).

For validation purposes, the Swadener–Pharr method [32] was used to compute the indentation moduli \(M \) in all the directions of the space for a given stiffness tensor \(C \), as obtained from the solutions of equations (2.2)–(2.4):

\[
M = \frac{4\pi}{\int_0^{\infty} [\mathbf{B}(t) \cdot \mathbf{C} : [\mathbf{a}_3 \otimes \mathbf{a}_3] / \sqrt{(a_1/a_2)^2 \cos^2 \gamma + (a_1/a_2)^2 \sin^2 \gamma}] t \, d\gamma.
\] (2.5)

In this formulation, \(\mathbf{B} \) is the Barnett–Lothe tensor related to stiffness tensor \(\mathbf{C} \); \(\mathbf{r}, \mathbf{s}, \mathbf{t} \) is an orthogonal reference system; \(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \) is the indentation coordinate system; \(\gamma \) is the angle between the direction \(\mathbf{t} \) and the \(\mathbf{a}_3 \) axis; \(a_1 \) and \(a_2 \) are the semi-axes lengths of the elliptical projected area of contact.

3. Results

3.1. Mechanical modulation at the lamellar level

The average loading–unloading indentation curves obtained in the two orthogonal directions at the four maximum penetration depths are reported in figure 2. The curves show how the indentation response of the tissue depends on the global orientation direction (\(A \) versus \(T \)). A good repeatability of the loading branch for increasing loads was obtained between tests at different maximum depth. The mean value and standard deviation of maximum load at 50, 100, 200, and 300 nm are 107 (±10) \(\mu \)N, 326 (±29) \(\mu \)N, 1004 (±69) \(\mu \)N, and 1984 (±104) \(\mu \)N, respectively, in the axial direction, and 110 (±19) \(\mu \)N, 263 (±29) \(\mu \)N, 648 (±77) \(\mu \)N, and 1354 (±218) \(\mu \)N, respectively, in the transverse direction. The corresponding coefficient of variation (COV), defined as the ratio between the standard deviation and the mean value, ranges between approximately 0.17 (at 50 nm maximum depth, transverse direction) and approximately 0.05 (at 300 nm maximum depth, axial direction). The tissue indentation modulus ranges from 26.24 (±1.68) GPa to 19.73 (±0.73) GPa in the axial direction and from 23.59 (±3.55) GPa to 15.39 (±1.04) GPa in the transverse direction. The corresponding COV ranges between approximately 0.15 (at 50 nm maximum depth, transverse direction) and approximately 0.04 (at 300 nm maximum depth, axial direction).

The indentation modulus \(M \) shows a periodic alternating trend of stiffness with spatial distance radially across the osteon for both the axial (figure 3) and transverse (figure 4) directions, consistent with results reported in Gupta et al. [19]. The coefficient of determination (\(R^2 \)) for fits of the experimental data (figures 3 and 4) to equation (2.1) ranged between 0.61 and 0.01. Higher correlations were found for data taken at the smaller depths (50 nm), whereas smaller values corresponded to indentations carried out at 300 nm depths in both directions. All the obtained \(R^2 \) values are reported in the caption of figures 3 and 4. Further, a power analysis has been carried out on the data of figures 3 and 4. A statistically significant difference (one-way ANOVA, \(p < 0.001 \)) was found between the peaks and the valleys of the modulation at 50 and 100 nm maximum depth in both the axial and transverse direction, as well as for the 200 nm, axial direction experiments (\(p < 0.05 \)). Instead, no statistically significant difference (\(p > 0.05 \)) was found at
200 nm maximum depth in the transverse direction and at 300 nm maximum depth.

The mean value, M_0, and the amplitude of the modulation, D_M, depend on maximum depth and orientation of the indentation tests (figure 5). The mean values M_0 show the tissue to be stiffer when loaded in the axial direction compared with the transverse direction (figure 5a): indeed, anisotropy ratios, calculated as axial versus transverse indentation moduli mean values, vary between approximately 1.1 at lower maximum indentation depths (50 and 100 nm) to approximately 1.3 at higher maximum indentation depths (200 and 300 nm). Simultaneously, the spatial modulation of the mechanical properties is higher in the transverse compared with the axial direction (i.e. higher D_M, figure 5b). A decrease in the indentation moduli mean values is observed between 50 and 200 nm maximum depths, this decay being more pronounced in the transverse (approx. 22%) than in the axial (approx. 35%) direction. Instead, no statistically significant difference (one-way ANOVA, $p > 0.05$, $n = 9$) is noticeable within the same direction between 200 and 300 nm (figure 5c). The amplitude of the stiffness modulation (figure 5d) decreases with the indentation depth as well. The transverse amplitude is approximately two times higher than the axial at 50 nm indentation depth, whereas the trends in the two directions are similar beyond 100 nm depth: indeed, at higher indentation depths (200 and 300 nm), the amplitude values in both directions vanish and the difference between the amplitude values becomes negligible, as the two datasets show no statistically significant difference ($p > 0.05$, $n = 9$).

3.2. Estimation of E_L, E_P and $E(\theta)$ from the anisotropic analytical models

It is expected that carrying out indentations spatially from the Haversian canal edge to the osteonal external boundary will result in the angle θ continuously changing along the radial path owing to the spiral twisting of the mineralized collagen fibrils within a single lamella. E_L and E_P were estimated from indentation data at the lowest maximum indentation depth (50 nm, where both the spatial and depth resolution of the experiments were the highest, figures 3a and 4a) using the Delafargue & Ulm [31] model. Because this approach is valid only in the principal material symmetry directions, the analysis was carried out at spatial locations across the osteon where the indentation loading axis was parallel and perpendicular to the mineralized collagen fibrils long axis, that is at the nine different points r_i (with $r_i = 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5$ and 20 μm radial distances from the Haversian canal edge) corresponding to the peaks and valleys of the stiffness modulation in the axial and transverse directions (figures 3a and 4a). Thus, the indentation moduli $M_L(r_i)$ and $M_T(r_i)$ estimated from the Oliver–Pharr method represent the left-hand side of the system of equations (2.3)–(2.4). In order to simultaneously calculate the uniaxial elastic moduli $E_L(r_i)$ and $E_P(r_i)$, the three remaining material
The constants $n_{\text{PP}}(r_i)$, $n_{\text{LP}}(r_i)$, and $G_{\text{LP}}(r_i)$ were set to

$$n_{\text{PP}}(r_i) = 0.358; \quad n_{\text{LP}}(r_i) = 0.315; \quad G_{\text{LP}}(r_i) = \frac{E_L(r_i) + E_P(r_i)}{2} \times \frac{1}{2 \times (1 + ((v_{\text{LP}}(r_i) + v_{\text{LP}}(r_i))/2))}. \quad (3.1)$$

Here, $v_{\text{PP}}(r_i)$ and $v_{\text{LP}}(r_i)$ are average values from literature [18] and refer to the mechanical properties of a single sub-lamella. This procedure was applied to the nine couples of indentation moduli $M_A(r_i)$ and $M_T(r_i)$, enabling the identification of the nine corresponding couples of uniaxial elastic moduli $E_L(r_i)$ and $E_P(r_i)$ reported in figure 6a, b (bars).

The analytical model in equation (2.2) was then adopted to calculate $E(\theta)$ in the axial and transverse directions (figure 6a, b, sinusoidal curves), thus allowing the prediction of the stiffness at any arbitrary angle with respect to the fibril axis for the two experimental trends. In both cases, the Poisson’s ratio $v_{\text{LP}}(r_i)$ was set to the corresponding literature values for a sub-layer in an osteonal lamella found by Yoon & Cowin [18]; also, the periodicity of the modulation was set to the experimentally observed lamellar width (5.01 mm).

Results of this fitting are provided in table 3. The small discrepancy (approx. 6%) in E_L between the axial and transverse directions means that the mineralized collagen fibrils belonging to the thick and thin sub-lamellae maintain similar longitudinal mechanical properties. E_P exhibited a much higher discrepancy between axial and transverse direction.
of the stiffness tensor, i.e. the shear modulus and the Poisson’s ratio in the \(P_1-P_2\) plane, \(G_{P1P2}\) and \(\nu_{P1P2}\), were taken from literature [18]. For comparison purposes, the set of orthotropic elastic for a sub-layer in an osteonal lamella obtained by Yoon & Cowin [18] are included in table 4.

3.4. Validation of the experimental and analytical procedures

In order to validate the above procedure, the indentation moduli trends in the axial and transverse directions at 50 nm depth were calculated through the Swadener–Pharr method [32] using the set of elastic parameters reported in table 3 (transversely isotropic model) and in table 4 (orthotropic model). The indentation moduli are computed using 5° spacing for \(\theta\), corresponding to approximately 140 nm spacing in the radial paths. The computed values, compared with the experimental measures obtained at 50 nm maximum depth (figures 3a and 4a) and the fitting to the oscillatory function of equation (2.1), are shown in figure 7. Both material models agree reasonably well with the experimental values, as evidenced by the coefficients of determination \(R^2\) (reported in figure 7 caption) ranging between 0.59 and 0.62.

Results from the application of the Swadener–Pharr method are also presented in tables 5 and 6, where the indentation moduli mean value and amplitude of the modulation calculated with the oscillatory function best fitting the data (see eq. (2.1)) are compared with the computed mean value and amplitude of the oscillatory trends (dotted lines in figure 7). The percentage differences between the experimental and the computed indentation values are lower for the orthotropic elastic behaviour (below 5%) than the transversely isotropic behaviour, where differences up to approximately 20 per cent were found. The two pieces of evidence above—i.e. the fact that the coefficient of determination \(R^2\) associated to the Swadener–Pharr prediction with an orthotropic material model is similar to the \(R^2\) values obtained via equation (2.1), and the low discrepancy in terms of indentation moduli mean value and amplitude of the modulation between the experimental and the computed data for and orthotropic model—support both the reliability of the elastic parameters obtained through application of equation (2.2) to the data and the assumption of orthotropy to model the elastic mechanical behaviour of a sub-layer of mineralized collagen fibrils within an osteonal lamella.

3.3. Elastic constants for a sub-layer within an osteonal lamella

A set of orthotropic elastic parameters for a mineralized collagen fibrils sub-layer was inferred from the previous fittings by properly merging the two datasets reported in table 3. In the proposed set of elastic parameters (table 4), the uniaxial Young’s modulus \(E_1\) corresponds to the mean value of the Young’s moduli evaluated along the fibrils long axis in thin and thick layers; instead, uniaxial Young’s moduli \(E_2\) and \(E_{P2}\), as well as the shear moduli \(G_{L1}\) and \(G_{L2}\), are directly obtained from the previous fittings. The remaining entries of the elastic constants (approx. 23%), indicating that the transverse properties of the mineralized collagen fibrils are different in the thick and thin sub-lamellae.

Table 3. Results of fitting with equation (2.2) [19,26,27] independently applied to the 50 nm maximum depth data in terms of uniaxial elastic moduli \(E\) (figure 7) in the axial and transverse directions. The \(\nu_{P}\) values (bold typed) were assumed from Yoon & Cowin [18] to perform the fitting. The coefficient of determination \(R^2\) is given in the last column.

<table>
<thead>
<tr>
<th>indentation direction</th>
<th>(E_1) (GPa)</th>
<th>(E_2) (GPa)</th>
<th>(G_{LP}) (GPa)</th>
<th>(\nu_{P}) (—)</th>
<th>(R^2) (—)</th>
</tr>
</thead>
<tbody>
<tr>
<td>axial</td>
<td>27.70</td>
<td>22.60</td>
<td>9.26</td>
<td>0.301</td>
<td>0.88</td>
</tr>
<tr>
<td>transverse</td>
<td>26.17</td>
<td>17.98</td>
<td>8.16</td>
<td>0.330</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Figure 6. Spatial modulation (bars) of the uniaxial elastic moduli \(E\) obtained by using the Delafargue–Ulm approach [31] at 50 nm maximum penetration depth in the axial (a) and transverse (b) directions. Maxima correspond to \(E_1\) (longitudinal to collagen fibril long axis) and minima correspond to \(E_2\) (transverse to collagen fibril long axis). Standard deviations refer to \(n=9\) measurements. Fitting with the analytical model in equation (2.2) is also shown: the fitting results, together with the coefficient of determination values \(R^2\), are reported in table 3. Note ordinate does not start at zero.

4. Discussion

The aim of the study was to determine the orientation and size-dependent mechanical properties of individual secondary osteons in cortical bone, as well as to investigate the
The relationships $E_1 > E_2 > E_3$ and $\nu_{31} > \nu_{32} > \nu_{13}$ are maintained, as well as $G_{12} > G_{13}$.

The stabilization of material properties are sensed by the indentation probe. Indentation results indicate that the indentation experiment is involving a sufficient amount of tissue volume such that homogenized material properties are sensed by the indentation probe. The stabilization of M_0 and the decay to a negligible value of ΔM occurs at approximately the same length scale. This suggests that the homogenization process has completely developed at approximately 300 nm maximum depth, corresponding to a approximately 2 nm contact diameter between the tissue and the indenter.

Homogenization arguments alone are not able to fully justify the pronounced decay of the indentation moduli with the penetration depth achieved with the experimental tests, quantifiable in approximately 24 per cent and approximately 34 per cent reductions in the axial and transverse directions, respectively. Instead, the decrease in indentation modulus with indentation depth may be explained by considering peculiar deformation and failure mechanisms of bone tissue at the nano-structural level, such as shear transfer between mineral particles via intermediate ductile organic layers [36], slippage at the collagen–mineral interface [37], phase transformation of the mineral phase [38] and sacrificial bond disruption between fibrils [39]. In particular, Gupta et al. [40,41] showed that critical interfacial shear strength between the fibril and the interfibrillar matrix layer is exceeded when the bone is compressed above the yield point. When this happens, the matrix flows past the fibrils,
resulting in frictional losses and de-bonding of the fibrils and extrabril-lar matrix. A further evidence for this mechanism is achieved considering a single loading–unloading cycle of bone [41], as when a bone sample is relaxed after being deformed beyond the yield point, irreversible deformations develop at the tissue level but not at the fibril level. If we compare the loading and unloading stiffnesses at the tissue level, damage induced decrease in the tissue Young’s modulus occurs: this decay, quantified as approximately 20–25%, is consistent with the progressive diminishing of the stiffness mean value while increasing the maximum depth evidenced in the present work. Moreover, as the deformation mechanisms mentioned above contribute in determining a loss of integrity of the tissue, they can be considered as damage phenomena that cause a progressive degradation of material continuity; we speculate that a damage model can phenomenologically represents the overall tissue response subject to nanoindentation. Recently, a numerical study performed by our group [42] was devoted to the investigation of the role played by damage mechanics in the nanoindentation of osteonal lamellar bone, and we showed that damage models can predict the loss in mechanical properties obtained in the experiments.

The results of this work show that the stiffness modulation of the tissue is consistent with anisotropic fibrillar layers with a specific crystal orientation. Indeed, based on the difference of the elastic moduli in the directions perpendicular to the fibril (Table 3) between the thick and thin sub-lamel-lae, it can be speculated that the mineral platelets have an intrinsic orientation that could play a role in determining the mechanical properties normal to the fibrils long axis. This observation would agree with the rotated plywood model introduced by Weiner et al. [33,34], where collagen fibrils are rotated not only with respect to the lamellar boundary but also around their own axis (figure 8), as the mechanical properties obtained for a sub-layer can be explained by the azimuthal rotation of the fibrils around the longitudinal axis L, which changes the crystal orientation. Further evidence that the hydroxyapatite crystals strongly influence the elastic properties of the mineralized collagen fibrils along different directions is provided by Rho et al. [43], who studied intramuscular herring bones where mineralized collagen fibrils have a single orientation with a variation in mineralization along the length. Results clearly showed that the anisotropy ratio is influenced by the mineralization, as it drops from approximately 2.1 in the fully mineralized region to approximately 1.1 in areas at the earliest stage of mineralization. In this case, the presence of the mineral crystals seems to be the main aspect responsible for the difference in the elastic properties along different directions.

As already said in the §2, the bone samples were tested in ambient conditions. Although samples still retain a significant degree of hydration in this condition, in general an artificial increase in stiffness and reduction in ductility compared with the native state could results. However,
References

